tesseract-ocr图片识别开源工具

今天看同事的ppt,提到了图片识别,又tesseract-ocr,觉得不错,试一下,如果效果好可以用来做验证码的识别
http://code.google.com/p/tesseract-ocr/
tesseract是一款开源工具,我安装了Windows版试水先
1、首先登录首页在‘下载’页面下载
tesseract-ocr-setup-xx.xx.exe     
chi_sim.traineddata.gz 中文语言包

2、双击即可安装tesserract-ocr,
3、安装中文语言包,将语言包 chi_sim.traineddata.gz 解压到 Tesseract-OCR下
4、写测试代码:

package com.taobao.voc.tesseract;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;

import org.jdesktop.swingx.util.OS;

public class OCR {
private final String LANG_OPTION = "-l"; //英文字母小写l,并非数字1
private final String EOL = System.getProperty("line.separator");
private String tessPath = "D://java_tools//Tesseract-OCR";
//private String tessPath = new File("tesseract").getAbsolutePath();

public String recognizeText(File imageFile,String imageFormat)throws Exception{
File tempImage = ImageIOHelper.createImage(imageFile,imageFormat);
File outputFile = new File(imageFile.getParentFile(),"output");
StringBuffer strB = new StringBuffer();
List<String> cmd = new ArrayList<String>();
if(OS.isWindowsXP()){
cmd.add(tessPath+"//tesseract");
}else if(OS.isLinux()){
cmd.add("tesseract");
}else{
cmd.add(tessPath+"//tesseract");
}
cmd.add("");
cmd.add(outputFile.getName());
cmd.add(LANG_OPTION);
//cmd.add("chi_sim");
cmd.add("eng");

ProcessBuilder pb = new ProcessBuilder();
pb.directory(imageFile.getParentFile());

cmd.set(1, tempImage.getName());
pb.command(cmd);
pb.redirectErrorStream(true);

Process process = pb.start();
//tesseract.exe 1.jpg 1 -l chi_sim
int w = process.waitFor();

//删除临时正在工作文件
tempImage.delete();

if(w==0){
BufferedReader in = new BufferedReader(new InputStreamReader(new FileInputStream(outputFile.getAbsolutePath()+".txt"),"UTF-8"));

String str;
while((str = in.readLine())!=null){
strB.append(str).append(EOL);
}
in.close();
}else{
String msg;
switch(w){
case 1:
msg = "Errors accessing files.There may be spaces in your image's filename.";
break;
case 29:
msg = "Cannot recongnize the image or its selected region.";
break;
case 31:
msg = "Unsupported image format.";
break;
default:
msg = "Errors occurred.";
}
tempImage.delete();
throw new RuntimeException(msg);
}
new File(outputFile.getAbsolutePath()+".txt").delete();
return strB.toString();
}
}



package com.taobao.voc.tesseract;

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Iterator;
import java.util.Locale;

import javax.imageio.IIOImage;
import javax.imageio.ImageIO;
import javax.imageio.ImageReader;
import javax.imageio.ImageWriteParam;
import javax.imageio.ImageWriter;
import javax.imageio.metadata.IIOMetadata;
import javax.imageio.stream.ImageInputStream;
import javax.imageio.stream.ImageOutputStream;

import com.sun.media.imageio.plugins.tiff.TIFFImageWriteParam;

public class ImageIOHelper {
/**
* 图片文件转换为tif格式
* @param imageFile 文件路径
* @param imageFormat 文件扩展名
* @return
*/
public static File createImage(File imageFile, String imageFormat) {
File tempFile = null;
try {
Iterator<ImageReader> readers = ImageIO.getImageReadersByFormatName(imageFormat);
ImageReader reader = readers.next();

ImageInputStream iis = ImageIO.createImageInputStream(imageFile);
reader.setInput(iis);
//Read the stream metadata
IIOMetadata streamMetadata = reader.getStreamMetadata();

//Set up the writeParam
TIFFImageWriteParam tiffWriteParam = new TIFFImageWriteParam(Locale.CHINESE);
tiffWriteParam.setCompressionMode(ImageWriteParam.MODE_DISABLED);

//Get tif writer and set output to file
Iterator<ImageWriter> writers = ImageIO.getImageWritersByFormatName("tiff");
ImageWriter writer = writers.next();

BufferedImage bi = reader.read(0);
IIOImage image = new IIOImage(bi,null,reader.getImageMetadata(0));
tempFile = tempImageFile(imageFile);
ImageOutputStream ios = ImageIO.createImageOutputStream(tempFile);
writer.setOutput(ios);
writer.write(streamMetadata, image, tiffWriteParam);
ios.close();

writer.dispose();
reader.dispose();

} catch (IOException e) {
e.printStackTrace();
}
return tempFile;
}

private static File tempImageFile(File imageFile) {
String path = imageFile.getPath();
StringBuffer strB = new StringBuffer(path);
strB.insert(path.lastIndexOf('.'),0);
return new File(strB.toString().replaceFirst("(?<=//.)(//w+)$", "tif"));
}

}

测试代码

package com.taobao.voc.tesseract;
import java.io.File;
import java.io.IOException;

public class TestOCR {

/**
* @param args
*/
public static void main(String[] args) {
String path = "d://test4.jpg";
try {
String valCode = new OCR().recognizeText(new File(path), "jpg");
System.out.println(valCode);
} catch (IOException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
}
}

}

String path = "d://test4.jpg"; 修改为需要测试的图片,最好全中文,如果因为请更换语言包,OCR类中cmd.add("chi_sim");
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Tesseract-OCR是一个开源OCR(Optical Character Recognition,光学字符识别)引擎,可以将图片中的文字转换为可编辑的文本。它最早由惠普实验室开发并于2005年移交给Google维护。 Tesseract-OCR基于机器学习算法,能够从图像中准确地识别出文字。它支持多种语言,包括中文,而且能够适应各种场景,如印刷品、手写文字、图片中的文字等等。 使用Tesseract-OCR库的过程相对简单。首先,需要将待识别图片转换为适合Tesseract-OCR处理的格式,如TIFF或PNG。然后,调用Tesseract-OCR库的API,将图片作为参数传递给库,即可得到识别结果。 Tesseract-OCR识别库具有以下几个优点。首先,它是一个开源项目,这意味着任何人都可以查看、修改和提升其代码,使其更适应不同的需求。其次,它训练有素,可以提供高准确率的文字识别结果。此外,Tesseract-OCR库还可以通过训练自定义字体来提高特定字体的识别准确率,这一点对于需要处理特定类型文字的应用非常有用。 然而,Tesseract-OCR库也存在一些局限性。首先,它对于复杂图形或低分辨率的图片识别效果较差。其次,虽然Tesseract-OCR支持中文识别,但对于一些特殊的中文字符或排版形式可能出现辨识错误的情况。 综上所述,Tesseract-OCR是一个功能强大的OCR识别库,适用于各种场景的文字识别需求。无论是从印刷品、手写文字还是图片中提取文字,Tesseract-OCR都能够提供准确的识别结果,并且其开源性质和可定制化的特点为用户提供了更大的自由度。 ### 回答2: Tesseract-OCR识别库是一个开源的光学字符识别OCR工具,由HP实验室开发,现由Google维护。它能够将印刷体或手写体的文字转换为计算机可识别的文本。 Tesseract-OCR识别库支持多种语言和平台,并且是一个高度准确的OCR引擎。它具有丰富的功能,包括自动文本分区、文本对齐和格式化、自动旋转图像等。此外,它还可以识别多个字体、文字大小和颜色的文本。 Tesseract-OCR识别库的使用也非常简单。它可以通过API或命令行界面进行调用和集成,还提供了生成HTML、PDF等格式文件的功能。用户可以通过调整参数来优化识别结果,如设置语言、字体和识别区域等。 Tesseract-OCR识别库在各种应用中得到广泛应用。它可以用于数字化文档、扫描文档、文本识别和自动化处理等方面。通过将纸质文档转换为可编辑的文本文件,可以提高办公效率和搜索能力,并方便文档的归档和分享。 总的来说,Tesseract-OCR识别库是一个强大且易于使用的工具,能够准确地将印刷体或手写体的文字转换为计算机可识别的文本。它的广泛应用范围使它成为数字化时代的重要工具之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值