相似性度量

二元向量的相似性度量(每一维都少的信息量,主要是0,1等有 or 没有属性):

Dice:2*|(X∩Y)|/(|X|+|Y|), *2保证∈[0,1],维数不一致时,差别大。

jaccard |(X∩Y)/(X∪Y)|,交叠程度小时,值较低

交叠系数:|(X∩Y)|/min{|X|,|Y}}, 互相之间的包含性,=1

cosine: |X∩Y|/根号(|X|*|Y|)

对于实值:

只有cosine

欧式空间对向量长度的定义

两个向量的点积

欧式距离

归一化系数

概率度量方法,不同概率分布之间(不)相似度量方法:

KL 相对熵: D(p||q),采用p分布代替q分布时,多少信息丢失 q=0,穷大问题,不对称

iRad: D(p||p+q/2) + D(q||p+q/2),对称

L1 norm:∑|p-q|

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页