Description
Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
Input
输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
Output
输出最长区域的长度。
Sample Input
5 5 1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9
Sample Output
25
解题思路:求出每个点的最长,然后找出最长即可,用动态规划还是简单的,思路还是明了的。 代码如下:
- #include<iostream>
- usingnamespacestd;
- intdata[102][102];
- intnum[102][102];//记录每个点的最长的
- intm,n;
- intMaxsize=0;
- intsearch(inti,intj)
- {
- intMax=0;
- if(num[i][j]>0)//如果这一点已经处理完了,就知道它的最长长度,直接返回
- returnnum[i][j];
- if(j-1>=0)//往左走
- if(data[i][j]>data[i][j-1])
- if(Max<search(i,j-1))
- Max=search(i,j-1);
- if(j+1<n)//往右走
- if(data[i][j]>data[i][j+1])
- if(Max<search(i,j+1))
- Max=search(i,j+1);
- if(i-1>=0)//往上走
- if(data[i][j]>data[i-1][j])
- if(Max<search(i-1,j))
- Max=search(i-1,j);
- if(i+1<m)//往下走
- {
- if(data[i][j]>data[i+1][j])
- if(Max<search(i+1,j))
- Max=search(i+1,j);
- }
- returnnum[i][j]=Max+1;//如果这个点还没处理,符合就直接加一
- }
- intmain()
- {
- cin>>m>>n;
- for(inti=0;i<m;i++)
- for(intj=0;j<n;j++)
- {
- cin>>data[i][j];
- num[i][j]=0;
- }
- for(inti=0;i<m;i++)
- for(intj=0;j<n;j++)
- num[i][j]=search(i,j);
- for(inti=0;i<m;i++)
- {
- for(intj=0;j<n;j++)
- if(num[i][j]>Maxsize)
- {
- Maxsize=search(i,j);
- }
- }
- cout<<Maxsize<<endl;
- return0;
- }