POJ 3735 Training little cats

很神奇的一道矩阵题,这也说明了矩阵的神奇之处。 构造矩阵的方法,我是想不出来了,只能从网上找了找思路。

因m的数据范围较大,用矩阵连乘。
构建矩阵模型,peanut[N] = {0,0,。。。。0,1}:即前n个数为0,最后一个数取1
matrix[N][N],初始化条件下为单位矩阵,。。。
对猫咪进行操作转化为在对矩阵peanut进行操作,一组操作过程转化为矩阵matrix,那么m次操作,即对peanut*(matrix^m)

然后 对题中样例就是

初始化下matrix为单位矩阵
1000

0100
0010
0001

输入g 1, 就应该在第1列最后一个加1

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

输入s x y就是把x, y列的值都互换

输入e x,就是把x 列的值都清零

然后用矩阵快速幂就OK了。注意要用__int64


/* ID: sdj22251 PROG: subset LANG: C++ */ #include <iostream> #include <vector> #include <list> #include <map> #include <set> #include <deque> #include <queue> #include <stack> #include <bitset> #include <algorithm> #include <functional> #include <numeric> #include <utility> #include <sstream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstdlib> #include <cctype> #include <string> #include <cstring> #include <cmath> #include <ctime> #define LOCA #define MAXN 500005 #define INF 100000000 #define eps 1e-7 #define L(x) x<<1 #define R(x) x<<1|1 using namespace std; int n, m; struct wwj { int r, c; __int64 mat[105][105]; }need, pea; void init() { memset(pea.mat, 0, sizeof(pea.mat)); memset(need.mat, 0, sizeof(need.mat)); pea.r = 1; pea.c = n; need.r = n; need.c = n; for(int i = 1; i <= n; i++) { pea.mat[1][i] = 0; need.mat[i][i] = 1; } pea.mat[1][n] = 1; } wwj multi(wwj x, wwj y) { wwj t; int i, j, k; memset(t.mat, 0, sizeof(t.mat)); t.r = x.r; t.c = y.c; for(i = 1; i <= x.r; i++) { for(k = 1; k <= x.c; k++) if(x.mat[i][k]) { for(j = 1; j <= y.c; j++) t.mat[i][j] += x.mat[i][k] * y.mat[k][j]; } } return t; } int main() { #ifdef LOCAL freopen("d:/data.in","r",stdin); freopen("d:/data.out","w",stdout); #endif int i, j, p, x, y, k; char s[5]; while(scanf("%d%d%d", &n, &m, &k) != EOF) { if(n == 0 && m == 0 && k == 0) break; n++; init(); while(k--) { scanf("%s", s); if(s[0] == 'g') { scanf("%d", &x); need.mat[n][x]++; } else if(s[0] == 'e') { scanf("%d", &x); for(i = 1; i <= n; i++) need.mat[i][x] = 0; } else if(s[0] == 's') { scanf("%d%d", &x, &y); for(i = 1; i <= n; i++) swap(need.mat[i][x], need.mat[i][y]); } } while(m) { if(m & 1) { pea = multi(pea, need); } need = multi(need, need); m = m >> 1; } for(i = 1; i < n; i++) printf("%I64d ", pea.mat[1][i]); puts(""); } return 0; }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值