大班下学期工作计划

大班下学期工作计划
2011年03月17日
  大班下学期工作计划
  一、情况分析 
  (一)概况:
  本班现有幼儿29名幼儿,男孩14名,女孩15名,其中3名幼儿是插班生。三分之二的幼儿和爷爷、奶奶、外公、外婆生活在一起,三分之一的幼儿父母生活在一起。
  (二)本班特点及主要表现:
  优势表现:
  1、具备了基本的生活自理能力,能独立进餐、盥洗、入厕、喝水、会自己穿脱衣物,并放在指定地方,会自己整理床铺,安静午睡,能做好值日生工作。
  2、喜欢老师,喜欢上幼儿园,乐意帮助小朋友,做错了事主动承认并能及时改正。
  3、多数幼儿喜欢参加各项活动,有好奇心。
  4、做操比较积极。
  弱势因素分析:
  1、几名性格内向的幼儿:叶诗、温莉姗、温俊业、杨静、黎浩贤等,对集体生活还不太适应,在自我服务方面;生活、卫生、学习习惯培养方面和学习兴趣方面较差。
  2、本班幼儿的认知水平不平衡,个体差异较大,特别是个别新上大班的幼儿对表达表现方面的兴趣不高,导致两极分化较突出。
  3、个别幼儿较为调皮,因此班级纪律也受到了一定影响,表现为上课注意力不集中,学习思维上不积极,爱做小动作、讲话、排队纪律较差。个别幼儿有下课追逐打闹现象。不会克服困难、不能独立完成学习任务的习惯。
  4、上课好多小朋友都有个坏习惯,就是不举手发言。
  5、几个幼儿不能按时完成老师布置的家庭作业
  (三)家长情况:
  本班幼儿家长文化素质水平不平衡,多数幼儿家住农村,家长平时工作较忙,自己照顾孩子的时间很少,对孩子在幼儿园的表现关心、了解得不够,对班级工作不够支持、配合的不够积极、主动。
  [b] [/b]
  二、学期目标
  1、坚持参加体育活动,提高对各种天气变化的适应能力,养成积极锻炼身体的习惯。
  2、动作准确、整齐有力地做操,能按音乐节拍姿势优美地做韵律操。
  3、姿势正确地走、跑、跳、灵活协调地进行跳跃、钻爬、攀登、投掷活动。
  4、投掷动作协调有力、能够控制、投远距离、投准目标。
  5、手眼协调地进行穿、编等精细的活动,发展肌肉动作,能与同伴合作、创造性进行构建。
  6、养成良好的饮食习惯、注意保持个人服装、用品的整洁。
  7、注意环境卫生,会做收拾、整理及清洁工作,养成爱清洁、讲卫生的好习惯。
  8、知道遇到危险时简单的自救办法。
  9、了解简单的防病知识,知道通过卫生、运动增强体质。
  10、积极主动地观察周围事物,爱思考,爱提问,喜欢自己动手操作,尝试去探求答案。
  11、运用多种工具和材料及多种形式创造性地进行表现。
  12、理解数的形成分解,练习加减运算。
  13、形成初步数量的“守恒”概念。
  14、认识时钟、货币、日历等,萌生时间意识。
  15、观察与发现各种事物的发展变化。
  16、初步了解人、动植物与环境之间的关系,萌生环境的保护意识。
  17、会读或唱不少于20首歌谣,会数1到100,会20以内的加减、组成。
  18、会写不少于50个汉字,会写自己的名字。
  19、独立并生动地朗读和讲述。
  20、看懂图片和图书,并想象画面中没有的情节与活动,进行创编。
  21、理解掌握必要的公共规则,初步做到遵守公共规则。
  22、初步了解小学生活,产生入学愿望。
AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值