12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种?
假定这12个人各自有自己的编号,即1、2、3... 11、12. 并且编号1到编号12所代表的人身高是递增的。
解这道题基于观察发现的如下规律:
a、第一排第一个人必定是1.
b、第一排第二个位置的可选值是2、3,第一排第三个位置的可选值是3、4、5,...,第一排第6个人的可选值是6、7、8、9、10、11
c、第一排的数字确定后,第二排的顺序可以唯一确定。因为剩下的6个数字只能递增排列(显然只有一种结果),所以只需确定第一排的所有排列可能就行了。 如下是解题的最初实现方法。采用穷举法实现。
假定这12个人各自有自己的编号,即1、2、3... 11、12. 并且编号1到编号12所代表的人身高是递增的。
解这道题基于观察发现的如下规律:
a、第一排第一个人必定是1.
b、第一排第二个位置的可选值是2、3,第一排第三个位置的可选值是3、4、5,...,第一排第6个人的可选值是6、7、8、9、10、11
c、第一排的数字确定后,第二排的顺序可以唯一确定。因为剩下的6个数字只能递增排列(显然只有一种结果),所以只需确定第一排的所有排列可能就行了。 如下是解题的最初实现方法。采用穷举法实现。
#include <iostream>
using namespace std;
#include <vector>
#include <set>
// 后来发现不需要记录路径中现有节点。因为数字本身存在偏序的问题,往上涨就行了
set<int> path;
vector<vector<int>> marks;
int getCount(int depth, int max)
{
if(depth==marks.size()) {
int flag=0;
for(int i=0; i<marks[depth-1].size(); i++) {
// path.find(marks[depth][i]) == path.end() &&
if( marks[depth-1][i]>max) {
flag ++;
}
}
return flag;
}
int count = 0;
for(int i=0;i<marks[depth-1].size();i++) {
if( marks[depth-1][i]>max) {
count += getCount(depth+1,marks[depth-1][i]);
}
}
return count;
}
int main()
{
int n;
while(cin>>n) {
marks.clear();
for(int i=1; i<=n/2; i++) {
vector<int> node;
for(int j=0;j<i;j++) {
node.push_back(i+j);
}
marks.push_back(node);
}
cout << getCount(1, 0) << endl;
}
return 0;
}
.