背影

昨天又一次离家远行,父亲在临行前和我默默的坐着,有一句没一句的聊着天。不时看到父亲用他那干枯黝黑的手指在眼眶周围掠过,我知道父亲在流泪,虽然他假装什么都没发生过一样。我走的时候,头也没回,眼眶早已湿润,不想让父亲看到,望着孩子的背影远去该是多么的伤感的一件事。

父亲是个下岗工人,进过粮站,船队,开过米店,后托人在地方公路段找了个道路清扫的工作,但是由于裁员的关系。没有后盾或任何权利关系的父亲几年前被辞退。这几年一直做着桥头小工的生活,这种要看天气才有工作的工作。还有在工作的时候超出常人难以想象的辛劳。这次回去的时候,看到父亲的下巴的胡子和两鬓都被岁月染上了不可逆转的颜色。61年出生在一个围垦的小村子了,爷爷奶奶拉扯大5他们5兄弟+2姐妹。本就生活条件不济的当时,要想吃饱饭都是奢侈的当时,在家里的小孩多到需要2个手才能数的来的数目,父亲没有接受很好的知识教育。但是却有作为一个平凡人最真实,最可贵的东西。勤劳,像每一部小说里的东西一样那么的麻木,却是父亲宝贵的财富。诚实,对人的憨厚老实,甚至于成了别人戏弄父亲的踏板。孝顺,一个让邻居老人都觉得想叫电视台来报导的品德。父亲,你的每一种形象,在我小小的心里都折射出不同的投影,影响我鞭挞我。教我走着人生的真的路和摸索实在的东西。小时候,父亲也逃学。觉得读书没有意思,逃到草堆里享受自由的快乐,天空的宁静和日月的变迁。

在写博客的过程中,我又不断的思索总结。发现了一些有助于自身的观念于想法,慢慢开始感受博客的力量于文字记录的魅力。

父母是相亲结婚,父亲在30岁的时候,有了我。在他们平淡本来有点无味的生活里,多出了那么一个小生命或者说小的传承。他们努力的哺育他,让他不受风,不受寒,不受疾病的困苦于责难。想让他成为一个有钱人,因为他们自己在没有钱的日子里这样的熬过来。当然也就,理所应当的寄期望于他的儿子。希望他能有好的发展。虽然这个小时候常常生病,都不都爱装胖(萧山土话,撒娇赖皮的意思)。但是却也在他的生活中給予他继续支撑着这个家的希望与未来。

而今,这个小男孩带着梦想,走在追赶前人脚步的路上。试着追赶那些而今比自己大5~10岁或者更大的一批人群的时候,小男孩不断的摸索着他的轨迹。小男孩相信,他最终成功的概率比每期都买彩票最后中500W的概率更大。看着那个熟悉的背影,如今已经弯曲了他的腰脊;那个熟悉的脸庞如今已不再年轻;黝黑的被太阳炙烤的皮肤上,留下了他辛苦劳作的道道汗疤;父亲,在你看着儿子背影离去的时候,儿子也同样用背影默默的传达着对你无尽的感情。希望父亲永远健康!笑容常在.愿你的智慧与宝贵财富伴你度过幸福的时光。那么多美丽的辞藻也不能表达我心中的像潮水般来去的情感。愿一切都好!

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值