图的m色判定问题: 给定无向连通图G和m种颜色。用这些颜色为图G的各顶点着色.问是否存在着色方法,使得G中任2邻接点有不同颜色。
图的m色优化问题:给定无向连通图G,为图G的各顶点着色, 使图中任2邻接点着不同颜色,问最少需要几种颜色。所需的最少颜色的数目m称为该图的色数。
若图G是可平面图,则它的色数不超过4色(4色定理).
4色定理的应用:在一个平面或球面上的任何地图能够只用4种
颜色来着色使得相邻的国家在地图上着有不同颜色
任意图的着色
Welch Powell法
a).将G的结点按照度数递减的次序排列.
b).用第一种颜色对第一个结点着色,并按照结点排列的次序
对与前面着色点不邻接的每一点着以相同颜色.
c).用第二种颜色对尚未着色的点重复步骤b).用第三种颜色
继续这种作法, 直到所有点着色完为止.
#include <fstream>
#include <iostream>
#include <stdlib.h>
#include <algorithm>
using namespacestd;
int map[10][10];//邻接矩阵
typedef structNode{ //定义节点结构体
int index; //编号
int degree; //度
int color; //改节点的颜色
} Node;
Nodenodes[10];
bool com(Nodenode1,Nodenode2) { //按度从高到低排序
return node1.degree > node2.degree;
}
bool com2(Nodenode1,Nodenode2) { //按度从高到低排序
return node1.index < node2.index;
}
int main() {
ifstream read;
read.open("map.data");//map.data是存放数据的文件名
int m, n;
while (read >> m>> n) {
for (int i = 0; i < m; i++) {//读入数据
int degree = 0;
for (int j = 0; j < n; j++) {
read>> map[i][j];
if (map[i][j])
degree++;
}
nodes[i].index = i;
nodes[i].degree = degree;
nodes[i].color = 0;
}
//排序
sort(nodes,nodes + m, com);
int k = 0;//K 代表第几种颜色
while (true) {
k++;
int i;
for (i = 0; i < m; i++){//先找到第一个未着色的节点
if (nodes[i].color == 0) {
nodes[i].color = k;
break;
}
}
if (i == m)//循环退出的条件,所有节点都已着色
break;
//再把所有不和该节点相邻的节点着相同的颜色
for(int j=0; j<m; j++){
if(nodes[j].color ==0 &&map[nodes[i].index][nodes[j].index] == 0
&&i!=j)
nodes[j].color = k;
}
}
//输出结果:
sort(nodes,nodes + m, com2);
cout << "共需要" << k-1 << "种颜色" << endl;
for (int i = 0; i < m; i++)
cout<< "节点:"<<nodes[i].index <<":着色" << nodes[i].color <<endl;
return 0;
}
}
测试数据(map.data):
8 8
0 1 1 1 0 0 1 0
1 0 1 1 1 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 0 1 0
0 1 1 1 0 1 1 1
0 0 1 0 1 0 0 1
1 0 1 1 1 0 0 1
0 0 0 0 1 1 10
即:
运行结果;
共需要3种颜色
节点:1:着色1
节点:2:着色2
节点:3:着色3
节点:4:着色3
节点:5:着色1
节点:6:着色2
节点:7:着色2
节点:8:着色3