Java中的排列组合问题(一)

之前的blog《递归问题(二)》中,提到了一种用递归算法实现的数组的全排列功能。所谓全排列,数学上的定义是:从n个不同的物体中选出m个进行排列的方法数称为排列, 当m=n时称为全排列。比如一组数1、2、3,那么全排列为:123、132、213、231、312、321。数学上,也有一套理论来计算这种个m和n的排列问题,比如3个数的全排列就有P(3)=3*2*1=6种。全排列的算法这里再贴一下:

public class AllSort{ public static void main(String[] args) { char buf[]={'a','b','c'}; perm(buf,0,buf.length-1); } public static void perm(char[] buf,int start,int end){ if(start==end){//当只要求对数组中一个字母进行全排列时,只要就按该数组输出即可 for(int i=0;i<=end;i++){ System.out.print(buf[i]); } System.out.println(); } else{//多个字母全排列 for(int i=start;i<=end;i++){ char temp=buf[start];//交换数组第一个元素与后续的元素 buf[start]=buf[i]; buf[i]=temp; perm(buf,start+1,end);//后续元素递归全排列 temp=buf[start];//将交换后的数组还原 buf[start]=buf[i]; buf[i]=temp; } } } }

现在的问题是解决当n<m的时候,也就是一般的排列。分析这个排列的过程,首先是从m个物体中选取n,然后才是n的全排列。只不过当m=n的时候,我们省略了选取的过程。以1、2、3为例,当n=2时,P(3,2)=3*2=6,也就是12,21,13,31,23,32。那么算法如何实现呢?我是这么想的,首先你要知道这个m和n(废话!),然后构造一个长度为n的数组,这个数组是众多排列中的一个,然后不妨将长度为m的数组的前n位复制给这第一个数组,然后再循环后m-n位去循环替换这n位数组的每一位,这样就能实现选择的目的了。看代码:

import java.util.*; public class AllSort{ static int count = 0; static char[] buf = {'1', '2', '3', '4'}; static ArrayList<String> list = new ArrayList<String>(); public static void main(String[] args) { select(buf, list, 3); for(String str : list){ char[] temp = str.toCharArray(); perm(temp,0,temp.length-1); } System.out.println("In total: "+ count); } public static void select(char[] source, ArrayList<String> arrayList, int num){ int l = source.length; char[] temp = new char[num]; System.arraycopy(source, 0, temp, 0, num); arrayList.add(new String(temp)); for(int i=num; i<l; i++){ for (int j=0; j<num; j++){ char tempChar = temp[j]; temp[j] = source[i]; arrayList.add(new String(temp)); temp[j] = tempChar; } } } public static void perm(char[] buf, int start, int end){ if(start==end){//当只要求对数组中一个字母进行全排列时,只要就按该数组输出即可 for(int i=0;i<=end;i++){ System.out.print(buf[i]); } count ++; System.out.println(); } else{//多个字母全排列 for(int i=start;i<=end;i++){ char temp=buf[start];//交换数组第一个元素与后续的元素 buf[start]=buf[i]; buf[i]=temp; perm(buf,start+1,end);//后续元素递归全排列 temp=buf[start];//将交换后的数组还原 buf[start]=buf[i]; buf[i]=temp; } } } }

可以看出一个有意思的现象:数学上的定义,全排列是排列的特殊情况,然而在代码实现是,排列的实现方法是以全排列为基础的。

刚在CSDN的资源里看到了一个哥们写的关于排列组合的源码,他说他的代码算法效率算是比较高的了,我会在分析之后尽快撰写下篇blog。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值