拒绝事倍功半:轻松生活达成卓越成就

来自柏林的研究

  早在 20 世纪 90 年代,坐落于西柏林中心有着悠久历史的艺术大学(Universit?t der Künste)里,学校下属的一个心理学家三人小组开始研究小提琴手。

  正如他们后来发表的心理学评论(Psychological Review)中描述的那样,研究人员邀请学院的音乐教授帮助他们挑选一组杰出小提琴手——在教授的眼中这些学生未来可能成为职业演奏家。

  我们把这组叫做精英演奏者。

  作为对比,研究人员从学校的教育学院也选了一组学生。这些学生将来准备成为音乐老师。他们对小提琴热情很高,但据教授说他们的能力与第一组不在同一等级。

  我们把这一组叫做普通演奏者。

  三位研究人员通过一系列深入面谈提出问题。他们给学生们发日记本,将每天 24 小时按 50 分钟分段,送学生回家以便仔细记录他们的时间分配。

  得到充足的数据之后,研究人员开始试图回答一个重要的问题:为什么精英演奏者比普通演奏者更优秀?

  一个显而易见猜测是精英演奏者比普通演奏者更加努力。也就是说,他们愿意进行必要的长时间严格练习(Tiger Mom-style hours)以变得优秀,而普通演奏者则是打发时间享受生活。

  然而,研究数据得出的结论却并不像人们想象的那样

  解密卓越背后的模式

  首先,我们可以推翻精英演奏者练习得更多这一假设。日记显示,两组每周练习演奏花费的平均时间相等(大约50小时)。

  区别在于如何安排时间。精英演奏者在刻意练习(deliberate practice)上花费的时间是普通演奏者的3倍。所谓刻意练习指专为能力提升而设计的有条理但让人感到不舒服的练习。

  这并不令人吃惊,刻意练习的重要性已经被多次提出和重复(c.f., Gladwell)。

  研究人员并没有到此为止。

  他们还对学生如何安排时间进行了研究。他们发现普通演奏者一整天都在练习。论文中的图表显示,一天中练习时间没有变化,平均练习时间与一天中活动时间的比值呈一条直线。

  与之相对的是,精英演奏者在两个清晰的时段进行巩固练习。当为这些演奏者绘出平均练习时间与活动时间的比值曲线时,你会看到两个突出的峰值:一个在早上,另一个在下午。

  事实上,演奏者水平越高,峰值越突出。对于精英中的精英——教授眼中有资格进入德国两个最好交响乐团的少数精英演奏者——基本上也没有背离每天两个练习时段的安排。

  对其从事他领域的选手而言,在日常生活中劳逸结合取得的效果同样非常显著。例如睡眠:精英选手比普通选手的睡眠时间要多出一个小时。

  消除疲劳也是一样。研究人员询问演奏者每周练习与参加业余活动时间比率——这是一个消除疲劳重要的主观感受指标。数据显示,精英演奏者比普通演奏者明显更加放松,而顶尖的演奏者则是其中最放松的。

拒绝事倍功半:轻松生活达成卓越成就

  勤奋工作(hard work)不同于努力工作(hard to work)

  总结以上研究结果:

  ▲ 普通演奏者和精英演奏者工作时间相同(每周在音乐上花费 50 个小时)

  ▲ 但他们没有将时间花到正确的练习上(在关键的刻意练习上,他们花费的时间要比精英演奏者少 3 倍)

  ▲ 更进一步说,他们的练习在一整天中杂乱分散。所以即使他们没有比精英演奏者练得更多,还是会睡得较少并感到压力重重,更不要提演奏水平仍然那么糟糕了。

  在研究取得高成就人群时,我会不断地看到这个现象。例如,在对顶尖学生的研究中更是频繁出现,我甚至为它起了一个名字:放松的罗德学者悖论(the paradox of the relaxed Rhodes Scholar)。

  译注:这里译者没有找到更好的中文对应 hard work 与 hard to work,读者可参考下文中的解释对照理解。

  这项研究让我对这个悖论得到了一些启发。它提供了实验证据证明勤奋工作与努力工作是有区别的:

  ▲ 勤奋工作(hard work)是刻意练习。刻意练习并不有趣,但每天并不需要做很多(精英演奏者平均每天做3.5个小时刻意练习,分两次完成)。同时刻意练习为你技术提高提供了可度量的方式,这会产生一种强烈的满足感和动力。因此,尽管刻意练习很辛苦,但它完全可以在轻松愉快的一天中进行,而不会让你精疲力尽。

  ▲ 与之相反,努力工作(hard to work)会让人精疲力尽。它会让你每天都处于一种错误的忙碌状态,你会和柏林研究中那些普通演奏者一样,感到疲惫和压力。正如我们刚刚知道的那样,这对提高成果没有一丁点作用。

  这项分析得出了一个非常重要的结论。无论你是学生或职场中人,如果你的目标是达成一个杰出的人生,那么忙碌和疲劳应当是你的大敌。如果你长期感到压力大并工作得很晚,那么你就错了。你就像是艺术大学里的普通演奏者——而不是精英。你在通过努力工作而不是勤奋工作来构建人生。

  这项研究的建议,也是我自己的建议是,简单生活,做得更少,但却是完全投入和全神贯注地去做。完成工作之后就去享受剩余的时光。

  英文原文:If You’re Busy, You’re Doing Something Wrong: The Surprisingly Relaxed Lives of Elite Achievers

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
GeoPandas是一个开源的Python库,旨在简化地理空间数据的处理和分析。它结合了Pandas和Shapely的能力,为Python用户提供了一个强大而灵活的工具来处理地理空间数据。以下是关于GeoPandas的详细介绍: 一、GeoPandas的基本概念 1. 定义 GeoPandas是建立在Pandas和Shapely之上的一个Python库,用于处理和分析地理空间数据。 它扩展了Pandas的DataFrame和Series数据结构,允许在其中存储和操作地理空间几何图形。 2. 核心数据结构 GeoDataFrame:GeoPandas的核心数据结构,是Pandas DataFrame的扩展。它包含一个或多个列,其中至少一列是几何列(geometry column),用于存储地理空间几何图形(如点、线、多边形等)。 GeoSeries:GeoPandas中的另一个重要数据结构,类似于Pandas的Series,但用于存储几何图形序列。 二、GeoPandas的功能特性 1. 读取和写入多种地理空间数据格式 GeoPandas支持读取和写入多种常见的地理空间数据格式,包括Shapefile、GeoJSON、PostGIS、KML等。这使得用户可以轻松地从各种数据源中加载地理空间数据,并将处理后的数据保存为所需的格式。 2. 地理空间几何图形的创建、编辑和分析 GeoPandas允许用户创建、编辑和分析地理空间几何图形,包括点、线、多边形等。它提供了丰富的空间操作函数,如缓冲区分析、交集、并集、差集等,使得用户可以方便地进行地理空间数据分析。 3. 数据可视化 GeoPandas内置了数据可视化功能,可以绘制地理空间数据的地图。用户可以使用matplotlib等库来进一步定制地图的样式和布局。 4. 空间连接和空间索引 GeoPandas支持空间连接操作,可以将两个GeoDataFrame按照空间关系(如相交、包含等)进行连接。此外,它还支持空间索引,可以提高地理空间数据查询的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值