NOI2007.Day2.T3.追捕盗贼

这道题是看的郑暾大牛的论文《平衡思想》

里面说这道题是树的Search Number问题,有O(n)解法,恰好我这里有数据&标程,一看标程8.5k……

郑暾大牛给出了一种DP构造解

虽然不是正解,但是在大部分情况下可以保证与最优解一样

而且代码较短(我只写了120行),性价比较正解高出太多,在考试的时候不失为一种好的方法

因为是在树上,树有个性质就是每个点都是割点,所以每个点都可以把树划分成若干不连通的块,然后递归进去做

算法会枚举一个点作为根,对于子树则默认子树的初始分割点就是根(这是有时达不到正解的原因)(否则复杂度会大大增加)

因此复杂度O(n^2),实测较快,时限很宽松




//Lib #include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<ctime> #include<iostream> #include<algorithm> #include<vector> #include<string> #include<queue> using namespace std; //Macro #define rep(i,a,b) for(int i=a,tt=b;i<=tt;++i) #define drep(i,a,b) for(int i=a,tt=b;i>=tt;--i) #define erep(i,e,x) for(int i=x;i;i=e[i].next) #define irep(i,x) for(__typedef(x.begin()) i=x.begin();i!=x.end();i++) #define read() (strtol(ipos,&ipos,10)) #define sqr(x) ((x)*(x)) #define pb push_back #define PS system("pause"); typedef long long ll; typedef pair<int,int> pii; const int oo=~0U>>1; const double inf=1e20; const double eps=1e-6; string name="",in=".in",out=".out"; //Var struct W { int x,y;char order; }way[20008]; struct E { int next,node; }e[2008]; int cnt,n,ans=oo,as,tot; int h[1008],f[1008]; void add(int a,int b){e[++tot].next=h[a];e[tot].node=b;h[a]=tot;} void Land(int x){way[++cnt].order='L';way[cnt].x=x;} void Back(int x){way[++cnt].order='B';way[cnt].x=x;} void Move(int x,int y){way[++cnt].order='M';way[cnt].x=x;way[cnt].y=y;} void TDP(int x,int fa) { int maxx=0,msize=0,son=0,y; erep(i,e,h[x]) { if((y=e[i].node)!=fa) { TDP(y,x); if(f[y]==maxx)msize++; if(f[y]>maxx)maxx=f[y],msize=1; ++son; } } if(msize>1)f[x]=maxx+1;else f[x]=maxx; if(son==0)f[x]++; } void Solve(int x,int fa,int t,int d) { int maxx=0,msize=0,son=0,mnum=-1,y; erep(i,e,h[x]) { if((y=e[i].node)!=fa) { Solve(y,x,0,0); if(f[y]==maxx)msize++; if(f[y]>maxx)maxx=f[y],msize=1,mnum=y; ++son; } } if(d==1) { erep(i,e,h[x]) if((y=e[i].node)!=fa) { if(y!=mnum) { Land(x); Move(x,y); Solve(y,x,1,1); } } if(son==0){Back(x);return;} Move(x,mnum);Solve(mnum,x,1,1); } if(msize>1)f[x]=maxx+1;else f[x]=maxx; if(son==0)f[x]++; } void Work() { scanf("%d",&n);int a,b; rep(i,1,n-1)scanf("%d%d",&a,&b),add(a,b),add(b,a); rep(i,1,n) { memset(f,0,sizeof f); TDP(i,0); if(f[i]<ans)ans=f[i],as=i; } printf("%d\n",ans); memset(f,0,sizeof f); Land(as);Solve(as,0,1,1); } void Outit() { printf("%d\n",cnt); rep(i,1,cnt) { if(way[i].order=='M')printf("%c %d %d\n",way[i].order,way[i].x,way[i].y); else printf("%c %d\n",way[i].order,way[i].x); } } int main() { // freopen((name+in).c_str(),"r",stdin); // freopen((name+out).c_str(),"w",stdout); // Init(); Work(); Outit(); return 0; }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值