用堆栈实现递归其实并没有消除递归,只不过人工做了本来由编译器做的事情。真正的非递归是指运算时所需要的空间是常数,即所需空间与问题的输入规模无关。并非所有递归都可以转换成非递归,比如著名的Ackmann函数。
递归转非递归方法:
(1)用一般公式直接代替。象经常看到的斐波那契数列,它就存在通项公式,而无需采用递归实现。
(2)使用栈来实现
(3)通过Cooper变换、反演变换将一些递归转化为尾递归,从而迭代求出结果
至于什么是Cooper变换,反演变换,这可得好好研究数学。这里贴两个变换实例。
计算阶乘的递归实现(用Haskell实现的,谁都看得懂):f x = if x = 0 then 1 else f(x-1)*x;
第一步:转变成尾递归
第二步:转变成迭代
递归转非递归方法:
(1)用一般公式直接代替。象经常看到的斐波那契数列,它就存在通项公式,而无需采用递归实现。
(2)使用栈来实现
(3)通过Cooper变换、反演变换将一些递归转化为尾递归,从而迭代求出结果
至于什么是Cooper变换,反演变换,这可得好好研究数学。这里贴两个变换实例。
计算阶乘的递归实现(用Haskell实现的,谁都看得懂):f x = if x = 0 then 1 else f(x-1)*x;
第一步:转变成尾递归
int G(int x, int y)
{
int x1, y1;
if (x == 1) {
return 1 * y;
} else {
x1 = x - 1;
y1 = x *y;
return G(x1, y1);
}
}
int f(int x)
{
return G(x, 1);
}
第二步:转变成迭代
int G(int x, int y)
{
int x1, y1;
loop:
if (x == 1) {
return 1 * y;
} else {
x1 = x - 1;
y1 = x *y;
x = x1
y = y1;
goto loop;
}
}
求斐波那契值:
f x |x==0 =0
|x==1 =1
|otherwise = f (x-1)+f (x-2)
第一步:转变成尾递归
int fib(int n){
if(n==0)
return 0;
return _fib(n,1,0);
}
int _fib(int n,int f1,int f2){
if(n==1)
return f1;
return _fib(n-1,f1+f2,f1);
}
第二步:转变成迭代(略)