问题引入
"物不知数"问题:
今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?
答曰:'二十三.'
术曰:三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得.凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得."
--孙子算经
当代解释
令任意固定整数为M,当M/A余a,M/B余b,M/C余c,M/D余d,…,M/Z余z时,这里的A,B,C,D,…,Z为除数,除数为任意自然数(如果为0,没有任何意义,如果为1,在孙子定理中没有计算和探讨的价值,所以,不包括0和1)时;余数a,b,c,d,z为自然整数时。
1、当命题正确时,在这些除数的最小公倍数内有解,有唯一的解,每一个最小公倍数内都有唯一的解;当命题错误时,在整个自然数范围内都无解。
2、当M在两个或两个以上的除数的最小公倍数内时,这两个或两个以上的除数和余数可以定位M在最小公倍数内的具体位置,也就是M的大小。
3、正确的命题,指没有矛盾的命题:分别除以A,B,C,D,…,Z不同的余数组合个数=A,B,C,D,…,Z的最小公倍数=不同的余数组合的循环周期.
问题分析
一、
"物不知数"问题的抽象表示:
x≡2(mod 3)
x≡3(mod 5)
x≡2(mod 7)
求满足上述条件的最小正整数x
x≡2(mod 3)
x≡3(mod 5)
x≡2(mod 7)
求满足上述条件的最小正整数x
二、
"物不知数"解法的数学表示:
任取被3除余2的5和7的倍数:140
任取被5除余3的7和3的倍数:63
任取被7除余2的3和5的倍数:30
140+63+30=233
减去3,5,7的公倍数中不超过233的最大的数210得到答案23
任取被3除余2的5和7的倍数:140
任取被5除余3的7和3的倍数:63
任取被7除余2的3和5的倍数:30
140+63+30=233
减去3,5,7的公倍数中不超过233的最大的数210得到答案23
三、问题归化
一般性问题:给定两两互质的正整数n1,n2,...,nk,要求找到最小的正整数a,满足a≡ai(mod ni)
将问题分解成若干次求解二元模线性方程组的解
将问题分解成若干次求解二元模线性方程组的解
算法步骤
令n=n1n2···nk,mi=n/ni利用扩展欧几里德算法计算出xi满足mixi ≡ 1(mod ni),由于n1,n2,...,nk两两互质,必有gcd(mi,ni)=1,即可保证一定有解
则a≡a1x1m1 + a2x2m2 + ... + akxkmk (mod n)
典型应用
大整数的表示
选取两两互素的正整数n1,n2,...,nk
已知对每个ni取模的值ri,就可以唯一确定一个1~n1n2...nk的大整数
做大整数加,减,乘法时,只要保证在这个范围内,均可转化为分别对相应的余数进行计算
选取两两互素的正整数n1,n2,...,nk
已知对每个ni取模的值ri,就可以唯一确定一个1~n1n2...nk的大整数
做大整数加,减,乘法时,只要保证在这个范围内,均可转化为分别对相应的余数进行计算
模板代码
/***** ACM之中国剩余定理 ********/
/******** written by C_Shit_Hu ************/
扩展欧几里得算法的运用///
/****************************************************************************/
/*
由于VC下面无法使用cout或者cin输出64位的整数。
故改用printf.
*/
/****************************************************************************/
#include<iostream>
using namespace std;
typedef _int64 llong;
llong b[1000],w[1000];
// 扩展欧几里得算法
// 递归的形式
llong extended_euclid(llong a, llong b, llong &x, llong &y)
{
llong d;
if(b == 0)
{x = 1; y = 0; return a;}
d = extended_euclid(b, a % b, y, x);
y -= a / b * x;
return d;
}
// 中国剩余定理
llong chinese_remainder(int len)
{
llong i, d, x, y, m, n, ret;
ret = 0; n = 1;
for(i=0; i < len ;i++) n *= w[i];
for(i=0; i < len ;i++)
{
m = n / w[i];
d = extended_euclid(w[i], m, x, y);
ret = (ret + y*m*b[i]) % n;
}
return (n + ret%n) % n;
}
int main()
{
int n,i;
llong res;
// 输入测试的除数和余数的组数
cout << "输入测试的除数和余数的组数: " ;
while (scanf("%d",&n)!=EOF)
{
// 输入除数和余数
cout << "输入除数和余数:" << endl;
for(i=0;i<n;i++) scanf("%I64d%I64d",&b[i],&w[i]);
res=chinese_remainder(n);
cout << "结果为:" ;
printf("%I64d\n",res);
}
return 0;
}
运行结果:
【未完待续】。。。。