HTC G13软解和ROOT

本文详细介绍了HTCG13手机解锁及获取ROOT权限的全过程。包括使用特定软件解锁设备、安装Recovery并刷入root.zip文件的具体步骤。

终于弄好了我的HTC G13的解锁和获取ROOT权限。

 

解锁的过程用软件完成,具体的步骤参考下面的网址,我就是这样搞定的:

http://bbs.gfan.com/android-3368295-1-1.html

http://bbs.gfan.com/viewthread.php?tid=3450284&extra=page%3D1%26amp%3Bsortid%3D

 

注:里面需要用到的tools我放在了tools.zip附件里。

 

UNLOCK之后,就可以获取ROOT权限或者刷ROM了。

获取最高权限要进行如下操作:

 

首先把root.zip(见附件)拷贝到SD卡的根目录下面,以备后面使用。

 

 

1、安装Recovery

首先确定你的手机已经解锁,解锁教程见上面的网址。

下载recovery.zip(见附件)

解压出recovery.img

 

进入fastboot:

手机关机-拔电池-再安回去-按音量下+电源键直到屏幕亮起

进入HBoot

按电源键进入Fastboot

 

用USB线连接电脑,显示Fastboot USB

使用fastboot(方法见解锁教程)(把解锁教程中的fastboot放进X:\windows\system32    X为系统盘盘符)

在命令行中输入

 

fastboot flash recovery X:\xxx\recovery.img

 X:\xxx为recovery.img的位置

 

 

如果电脑显示:

 

sending 'recovery' (5382 KB)... OKAY
writing 'recovery'... OKAY
说明recovery已经安装完成

 

 

 

进入Recovery:

上面的步骤成功后,

手机关机-拔电池-再安回去-按音量下+电源键直到屏幕亮起。

进入HBoot,

在HBoot中选择recovery,电源键确认进入recovery。

来到recovery主界面之后,

· 利用音量键选择第五项:install zip form sdcard,用电源键确定:

 

· 然后选择choose zip from sdcard:

  

· 找到root.zip,按电源键确认:

 

· 等待完成全部安装,最后重启。


 

 

 

P.S:

在刷RUU的时候,我碰到了这个问题,解决办法是来到手机的:“设置”=》“关于手机”=》“软件更新”。

把软件更新到刷RUU要求的最新版本,就可以了。

下面这个图就是我碰到的错误。

 


 

全文完。

希望对你有用。

睡觉去……

 

参考网址:

http://bbs.gfan.com/android-2654134-1-1.html

http://bbs.gfan.com/viewthread.php?tid=3450284&extra=page%3D1%26amp%3Bsortid%3D

http://bbs.gfan.com/android-2896691-1-1.html

http://bbs.gfan.com/android-3242996-1-1.html

http://bbs.fengbao.com/thread-456832-1-1.html

 

http://bbs.gfan.com/android-3368295-1-1.html

http://bbs.gfan.com/viewthread.php?tid=3450284&extra=page%3D1%26amp%3Bsortid%3D

 

内容概要:本文围绕基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定展开研究,重点探讨了在动态系统中如何通过MPC实现精确控制,同时利用MHE进行状态估计以提升系统鲁棒性精度。文中结合Matlab代码实现,展示了MPC与MHE协同工作的算法流程、数学建模过程及仿真验证,尤其适用于存在噪声或部分可观测的复杂系统环境。该方法能够有效处理约束条件下的最优控制问题,并实时修正状态估计偏差,从而实现对目标点的稳定镇定。; 适合人群:具备一定自动控制理论基础Matlab编程能力的高校研究生、基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定研究(Matlab代码实现)科研人员及从事控制系统开发的工程技术人员;熟悉状态估计与最优控制相关概念的研究者更为适宜; 使用场景及目标:①应用于机器人控制、航空航天、智能制造等需要高精度状态估计与反馈控制的领域;②用于深入理MPC与MHE的耦合机制及其在实际系统中的实现方式,提升对预测控制与状态估计算法的综合设计能力; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注MPC代价函数构建、约束处理、滚动优化过程以及MHE的滑动窗口估计机制,同时参考文中可能涉及的卡尔曼滤波、最小均方误差等辅助方法,系统掌握集成架构的设计思路与调参技巧。
内容概要:本文介绍了一种基于稀疏贝叶斯学习(SBL)的轴承故障诊断方法,提出两种群稀疏学习算法用于提取故障脉冲信号。第一种算法仅利用故障脉冲的群稀疏性,第二种进一步结合其周期性行为,以提升故障特征提取的准确性与鲁棒性。文档提供了完整的Matlab代码实现,适用于振动信号分析与早期故障检测,具有较强的工程应用价值。此外,文中还附带了多个科研领域的仿真资源链接,涵盖电力系统、信号处理、机器学习、路径规划等多个方向,突出MATLAB在科研仿真中的广泛应用。; 适合人群:具备一定信号处理或机械故障诊断基础,熟悉Matlab编程,从【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)事科研或工程应用的研究生、工程师及科研人员;对智能诊断、稀疏表示、贝叶斯学习感兴趣的技术人员。; 使用场景及目标:①应用于旋转机械(如轴承、齿轮箱)的早期故障检测与健康监测;②研究群稀疏性与周期性先验在信号分离中的建模方法;③复现SBL算法并拓展至其他故障特征提取任务;④结合所提供的网盘资源开展相关领域仿真研究与算法开发。; 阅读建议:建议结合Matlab代码逐行理算法实现细节,重点关注群稀疏建模与周期性约束的数学表达;推荐对比两种算法的实验结果以深入理其性能差异;同时可利用提供的网盘资源拓展学习其他仿真技术,提升综合科研能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值