题目链接:Click here~~
题意:
平面上有n(n<=1000)点,问组成的三角形中,周长最小是多少。
解题思路:
如果直接枚举的话,是O(n^3)肯定会超时,所以要优化。
首先我们考虑,周长c=L1+L2+L3,所以推得c > 2Li,假设Li的端点为点a、b,则又有Li>=| Xa-Xb |,故c > 2*| Xa-Xb |。
可以先按照X坐标从小到大排序,然后当已得到的最小值ans <= 2*|Xa-Xb|的时候,break。
#include <math.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
#define min(a,b) a < b ? a : b
struct TT
{
int x,y;
bool operator <(const TT& s)const
{
return x < s.x;
}
}A[1002];
bool One_Line(const TT& s1,const TT& s2,const TT& s3)
{
return (s2.y-s1.y)*(s3.x-s2.x) == (s3.y-s2.y)*(s2.x-s1.x);
}
double dis(const TT& s1,const TT& s2)
{
return sqrt( (double)(s1.x-s2.x)*(s1.x-s2.x) + (s1.y-s2.y)*(s1.y-s2.y) );
}
int main()
{
int z,n,ncase=0;
scanf("%d",&z);
while(z--)
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d%d",&A[i].x,&A[i].y);
sort(A,A+n);
double ans = 1e7;
for(int i=0;i<n-2;i++)
{
for(int j=i+1;j<n-1;j++)
{
if(ans <= 2*(A[j].x-A[i].x))
break;
double a = dis(A[i],A[j]);
if(ans <= 2*a)
continue;
for(int k=j+1;k<n;k++)
{
if(ans <= 2*(A[k].x-A[i].x))
break;
if(One_Line(A[i],A[j],A[k]))
continue;
double b = dis(A[j],A[k]);
double c = dis(A[k],A[i]);
ans = min(ans,a+b+c);
}
}
}
printf("Case %d: ",++ncase);
if(ans == 1e7)
puts("No Solution");
else
printf("%.3f\n",ans);
}
return 0;
}