HDU 3548 Enumerate the Triangles(找周长最小的三角形)

题目链接:Click here~~

题意:

平面上有n(n<=1000)点,问组成的三角形中,周长最小是多少。

解题思路:

如果直接枚举的话,是O(n^3)肯定会超时,所以要优化。

首先我们考虑,周长c=L1+L2+L3,所以推得c > 2Li,假设Li的端点为点a、b,则又有Li>=| Xa-Xb |,故c > 2*| Xa-Xb |。

可以先按照X坐标从小到大排序,然后当已得到的最小值ans <= 2*|Xa-Xb|的时候,break。

#include <math.h>
#include <stdio.h>
#include <algorithm>
using namespace std;

#define min(a,b) a < b ? a : b

struct TT
{
    int x,y;
    bool operator <(const TT& s)const
    {
        return x < s.x;
    }
}A[1002];

bool One_Line(const TT& s1,const TT& s2,const TT& s3)
{
    return (s2.y-s1.y)*(s3.x-s2.x) == (s3.y-s2.y)*(s2.x-s1.x);
}

double dis(const TT& s1,const TT& s2)
{
    return sqrt( (double)(s1.x-s2.x)*(s1.x-s2.x) + (s1.y-s2.y)*(s1.y-s2.y) );
}

int main()
{
    int z,n,ncase=0;
    scanf("%d",&z);
    while(z--)
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            scanf("%d%d",&A[i].x,&A[i].y);
        sort(A,A+n);
        double ans = 1e7;
        for(int i=0;i<n-2;i++)
        {
            for(int j=i+1;j<n-1;j++)
            {
                if(ans <= 2*(A[j].x-A[i].x))
                    break;
                double a = dis(A[i],A[j]);
                if(ans <= 2*a)
                    continue;
                for(int k=j+1;k<n;k++)
                {
                    if(ans <= 2*(A[k].x-A[i].x))
                        break;
                    if(One_Line(A[i],A[j],A[k]))
                        continue;
                    double b = dis(A[j],A[k]);
                    double c = dis(A[k],A[i]);
                    ans = min(ans,a+b+c);
                }
            }
        }
        printf("Case %d: ",++ncase);
        if(ans == 1e7)
            puts("No Solution");
        else
            printf("%.3f\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值