符号
| 名称 | 定义 | 举例 |
---|---|---|---|
读法 | |||
数学领域 | |||
=
| 等号 | x = y 表示 x 和 y 是相同的东西或其值相等。 | 1+ 1= 2 |
等于 | |||
所有领域 | |||
≠
| 不等号 | x ≠ y 表示 x 和 y 不是相同的的东西或数值。 | 1 ≠ 2 |
不等于 | |||
所有领域 | |||
<
> | 严格不等号 | x < y 表示 x 小于y 。 x > y 表示 x 大于y 。 | 3< 4 5> 4 |
小于,大于 | |||
序理论 | |||
≤
≥ | 不等号 | x ≤ y 表示 x 小于等于y 。 x ≥ y 表示 x 大于等于y 。 | 3≤ 4;5≤ 5 5≥ 4;5≥ 5 |
小于等于,大于等于 | |||
序理论 | |||
+
| 加号 | 4 + 6 表示 4 加 6。 | 2 + 7 = 9 |
加 | |||
算术 | |||
−
| 减号 | 9 − 4 表示 9 减 4。 | 8 − 3 = 5 |
减 | |||
算术 | |||
负号 | − 3 表示 3 的负数。 | − (− 5) = 5 | |
负 | |||
算术 | |||
补集 | A − B 表示包含所有属于 A 但不属于 B 的元素的集合。 | {1,2,4}− {1,3,4}= {2} | |
减 | |||
集合论 | |||
×
| 乘号 | 3 × 4 表示 3 乘以 4。 | 7 × 8 = 56 |
乘以 | |||
算术 | |||
直积 | X × Y 表示所有第一个元素属于 X ,第二个元素属于 Y 的有序对 的集合。 | {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)} | |
… 和…的直积 | |||
集合论 | |||
叉乘 | u × v 表示向量 u 和 v 的叉乘。 | (1,2,5) × (3,4,− 1) = (− 22, 16, − 2) | |
叉乘 | |||
向量代数 | |||
÷
/ | 除号 | 6 ÷ 3 或 6 / 3 表示 6 除以 3。 | 2 ÷ 4 = 0.5 12/4 = 3 |
除以 | |||
算术 | |||
√
| 根号 | √ x 表示其平方为 x 的正数。 | √ 4= 2 |
…的平方根 | |||
实数 | |||
复根号 | 若用极坐标表示复数 z = r exp(i φ )(满足 -π < φ ≤ π ),则 √ z = √ r exp(i φ /2)。 | √ (-1)= i | |
…的平方根 | |||
复数 | |||
||
| 绝对值 | |x | 表示实数轴 (或复平面 )上 x 和 0 的距离。 | |3| = 3, |-5| = |5| |i | = 1, |3+4i | = 5 |
…的绝对值 | |||
数 | |||
!
| 阶乘 | n ! 表示连乘积 1× 2× …× n 。 | 4! = 1 × 2 × 3 × 4 = 24 |
…的阶乘 | |||
组合论 | |||
~
| 概率分布 | X ~ D 表示随机变量 X 概率分布为 D 。 | X ~ N(0,1) :标准正态分布 |
满足分布 | |||
统计学 | |||
⇒
→ ⊃ | 实质蕴涵 | A ⇒ B 表示 A 真则 B 也真;A 假则 B 不定。 → 可能和 ⇒ 一样,或者有下面将提到的函数 的意思。 ⊃ 可能和 ⇒ 一样,或者有下面将提到的父集 的意思。 | x = 2⇒ x 2 = 4 为真,但 x 2 = 4 ⇒ x = 2 一般情况下为假(因为 x 可以是 − 2)。 |
推出,若…则 … | |||
命题逻辑 | |||
⇔
↔ | 实质等价 | A ⇔ B 表示 A 真则 B 真,A 假则 B 假。 | x + 5= y +2⇔ x + 3= y |
当且仅当 | |||
命题逻辑 | |||
¬
˜ | 逻辑非 | 命题 ¬ A 为真当且仅当 A 为假。 将一条斜线穿过一个符号相当于将 "¬ " 放在该符号前面。 | ¬ (¬ A )⇔ A x ≠ y ⇔ ¬ (x = y ) |
非,不 | |||
命题逻辑 | |||
∧
| 逻辑与 或交运算 | 若 A 为真且 B 为真,则命题 A ∧ B 为真;否则为假。 | n < 4∧ n >2⇔ n = 3,当 n 是自然数 |
与 | |||
命题逻辑 ,格理论 | |||
∨
| 逻辑或 或并运算 | 若 A 或 B (或都)为真,则命题 A ∨ B 为真;若两者都假则命题为假。 | n ≥ 4∨ n ≤ 2⇔ n ≠ 3,当 n 是自然数 |
或 | |||
命题逻辑 ,格理论 | |||
⊕
⊻
| 异或 | 若 A 和 B 刚好有一个为真,则命题 A ⊕ B 为真。 A ⊻ B 的意义相同。 | (¬ A ) ⊕ A 恒为真,A ⊕ A 恒为假。 |
异或 | |||
命题逻辑 ,布尔代数 | |||
∀
| 全称量词 | ∀ x : P (x ) 表示 P (x ) 对于所有 x 为真。 | ∀ n ∈ N : n 2≥ n |
对所有;对任意;对任一 | |||
谓词逻辑 | |||
∃
| 存在量词 | ∃ x : P (x ) 表示存在至少一个 x 使得 P (x ) 为真。 | ∃ n ∈ N : n 为偶数 |
存在 | |||
谓词逻辑 | |||
∃ !
| 唯一量词 | ∃ !x : P (x ) 表示有且仅有一个 x 使得 P (x ) 为真。 | ∃ !n ∈ N : n + 5= 2n |
存在唯一 | |||
谓词逻辑 | |||
:=
≡ : ⇔ | 定义 | x := y 或 x ≡ y 表示 x 定义为 y 的一个名字(注意:≡ 也可表示其它意思,例如全等 )。 P :⇔ Q 表示 P 定义为 Q 的逻辑等价。 | coshx := (1/2)(expx + exp(− x )) A XORB :⇔ (A ∨ B )∧ ¬ (A ∧ B ) |
定义为 | |||
所有领域 | |||
{ , }
| 集合 括号 | {a ,b ,c } 表示 a , b ,c 组成的集合。 | N = {0,1,2,…} |
…的集合 | |||
集合论 | |||
{: }
{ | } | 集合构造记号 | {x : P (x )} 表示所有满足 P (x ) 的 x 的集合。 {x | P (x )} 和 {x : P (x )} 的意义相同。 | {n ∈ N : n 2 <20}= {0,1,2,3,4} |
满足…的集合 | |||
集合论 | |||
∅
{} | 空集 | ∅ 表示没有元素的集合。 {} 的意义相同。 | {n ∈ N : 1< n 2 < 4}= ∅ |
空集 | |||
集合论 | |||
∈
∉ | 集合属于 | a ∈ S 表示 a 属于集合 S ;a ∉ S 表示 a 不属于S 。 | (1/2)− 1∈ N 2− 1∉ N |
属于;不属于 | |||
所有领域 | |||
⊆
⊂ | 子集 | A ⊆ B 表示 A 的所有元素属于 B 。 A ⊂ B 表示 A ⊆ B 但 A ≠ B 。 | A ∩ B ⊆ A ;Q ⊂ R |
…的子集 | |||
集合论 | |||
⊇
⊃ | 父集 | A ⊇ B 表示 B 的所有元素属于 A 。 A ⊃ B 表示 A ⊇ B 但 A ≠ B 。 | A ∪ B ⊇ B ;R ⊃ Q |
…的父集 | |||
集合论 | |||
∪
| 并集 | A ∪ B 表示包含所有 A 和 B 的元素但不包含任何其他元素的集合。 | A ⊆ B ⇔ A ∪ B = B |
…和…的并集 | |||
集合论 | |||
∩
| 交集 | A ∩ B 表示包含所有同时属于 A 和 B 的元素的集合。 | {x ∈ R : x 2 = 1}∩ N = {1} |
…和…的交集 | |||
集合论 | |||
/
| 补集 | A / B 表示所有属于 A 但不属于 B 的元素的集合。 | {1,2,3,4} / {3,4,5,6} = {1,2} |
减;除去 | |||
集合论 | |||
( )
| 函数 应用 | f (x ) 表示 f 在 x 的值。 | f (x ):= x 2 ,则 f (3)= 32 = 9。 |
f (x ) | |||
集合论 | |||
优先组合 | 先执行括号内的运算。 | (8/4)/2= 2/2= 1;8/(4/2)= 8/2= 4 | |
所有领域 | |||
ƒ :
X
→ Y | 函数 箭头 | ƒ :X → Y 表示 ƒ 从集合 X 映射到集合 Y 。 | 设ƒ :Z → N 定义为 ƒ (x )= x 2 。 |
从…到… | |||
集合论 | |||
o
| 复合函数 | f o g 是一个函数,使得 (f o g )(x ) = f (g (x ))。 | 若 f (x ) = 2x ,且 g (x ) = x + 3,则 (f o g )(x ) = 2(x + 3)。 |
复合 | |||
集合论 | |||
N
ℕ
| 自然数 | N 表示 {1,2,3,…},另一定义参见自然数条目。 | {|a |: a ∈ Z }= N |
N | |||
数 | |||
Z
ℤ
| 整数 | Z 表示 {…,− 3,− 2,− 1,0,1,2,3,…}。 | {a : |a |∈ N }= Z |
Z | |||
数 | |||
Q
ℚ
| 有理数 | Q 表示 {p /q : p ,q ∈ Z , q ≠ 0}。 | 3.14∈ Q π ∉ Q |
Q | |||
数 | |||
R
ℝ
| 实数 | R 表示 {limn→ ∞ a n : ∀ n ∈ N : a n ∈ Q , 极限存在}。 | π ∈ R √ (− 1)∉ R |
R | |||
数 | |||
C
ℂ
| 复数 | C 表示 {a +bi : a ,b ∈ R }。 | i = √ (− 1)∈ C |
C | |||
数 | |||
∞
| 无穷 | ∞ 是扩展的实数轴 上大于任何实数的数;通常出现在极限 中。 | limx→ 0 1/|x |= ∞ |
无穷 | |||
数 | |||
π
| 圓周率 | π 表示圆 周长和直径之比。 | A = π r ² 是半径为 r 的圆的面积 |
pi | |||
几何 | |||
||||
| 范数 | ||x || 是赋范线性空间 元素 x 的范数。 | ||x +y || ≤ ||x || + ||y || |
…的范数;…的长度 | |||
线性代数 | |||
∑
| 求和 | ∑ k =1n a k 表示 a 1 + a 2 + …+ a n . | ∑ k =14k 2 = 12 + 22 + 32 + 42 = 1+ 4+ 9+ 16= 30 |
从…到…的和 | |||
算术 | |||
∏
| 求积 | ∏ k =1n a k 表示 a 1a 2· · · a n . | ∏ k =14 (k + 2)= (1 + 2)(2+ 2)(3+ 2)(4+ 2)= 3× 4× 5× 6= 360 |
从…到…的积 | |||
算术 | |||
直积 | ∏ i =0n Y i 表示所有 (n+1)-元组 (y 0 ,…,y n )。 | ∏ n =13R = R n | |
…的直积 | |||
集合论 | |||
'
| 导数 | f '(x )函数f 在x 点的倒数,也就是,那里的切线 斜率 。 | 若 f (x )=x 2 , 则 f '(x )=2x |
… 撇; …的导数 | |||
微积分 | |||
∫
| 不定积分 或 反导数 | ∫ f (x )dx 表示导数为f 的函数. | ∫ x 2 dx = x 3 /3 |
…的不定积分; …的反导数 | |||
微积分 | |||
定积分 | ∫ a b f (x )dx 表示 x -轴和 f 在 x = a 和x = b 之间的函数图像 所夹成的带符号面积 。 | ∫ 0b x2 dx = b 3 /3; | |
从…到…以…为变量的积分 | |||
微积分 | |||
∇
| 梯度 | ∇ f (x1 , … , xn ) 偏导数组成的向量 (df / dx 1 , … ,df / dx n ). | 若 f (x ,y ,z ) = 3xy + z ² 则 ∇ f =(3y , 3x , 2z ) |
…的(del 或nabla 或梯度 ) | |||
微积分 | |||
∂
| 偏导数 | 设有f (x1 , … , xn ), ∂ f/∂ xi 是f 的对于xi 的当其他变量保持不变时的导数. | 若 f (x,y) = x2 y, 则 ∂ f /∂ x = 2xy |
…的偏导数 | |||
微积分 | |||
边界 | ∂ M 表示M 的边界 | ∂ {x: ||x|| ≤ 2} = {x: || x || = 2} | |
…的边界 | |||
拓扑 | |||
次数 | ∂ f(x) 表示f(x) 的次数( 也记作degf(x) ) | ||
…的次数 | |||
多项式 | |||
⊥
| 垂直 | x ⊥ y 表示 x 垂直于y ; 更一般的 x 正交于y . | 若 l ⊥ m 和m ⊥ n 则 l || n . |
垂直于 | |||
几何 | |||
底元素 | x = ⊥ 表示 x 是最小的元素. | ∀ x : x ∧ ⊥ = ⊥ | |
底元素 | |||
格理论 | |||
⊧
| 蕴含 | A ⊧ B 表示A 蕴含B , 在A 成立的每个 模型 中, B 也成立. | A ⊧ A ∨ ¬ A |
蕴含; | |||
模型论 | |||
⊢
| 推导 | x ⊢ y 表示 y 由 x 导出. | A → B ⊢ ¬ B → ¬ A |
从…导出 | |||
命题逻辑 , 谓词逻辑 | |||
◅
| 正则子群 | N ◅ G 表示 N 是G 的正则子群. | Z (G ) ◅ G |
是…的正则子群 | |||
群论 | |||
/
| 商群 | G /H 表示G 模 其子群H 的商群. | {0, a , 2a , b , b +a , b +2a } / {0, b } = {{0, b }, {a , b +a }, {2a , b +2a }} |
模 | |||
群论 | |||
≈
| 同构 | G ≈ H 表示 G 同构于 H | Q / {1, − 1} ≈ V , 其中 Q 是四元数群 V 是 克莱因四群 . |