数学符号表

符号
名称定义举例
读法
数学领域
=
等号 x = y 表示 x y 是相同的东西或其值相等。1+ 1= 2
等于
所有领域
不等号 x y 表示 x y 不是相同的的东西或数值。1 2
不等于
所有领域
<

>
严格不等号 x < y 表示 x 小于y

x > y 表示 x 大于y
3< 4
5> 4
小于,大于
序理论


不等号 x y 表示 x 小于等于y

x y 表示 x 大于等于y
3 4;5 5
5 4;5 5
小于等于,大于等于
序理论
+
加号 4 + 6 表示 4 加 6。2 + 7 = 9
算术
减号 9 4 表示 9 减 4。8 3 = 5
算术
负号 3 表示 3 的负数。 ( 5) = 5
算术
补集 A B 表示包含所有属于 A 但不属于 B 的元素的集合。{1,2,4} {1,3,4}= {2}
集合论
×
乘号 3 × 4 表示 3 乘以 4。7 × 8 = 56
乘以
算术
直积 X × Y 表示所有第一个元素属于 X ,第二个元素属于 Y有序对 的集合。{1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
… 和…的直积
集合论
叉乘 u × v 表示向量 u v 的叉乘。(1,2,5) × (3,4, 1) = ( 22, 16, 2)
叉乘
向量代数
÷

/
除号 6 ÷ 3 或 6 / 3 表示 6 除以 3。2 ÷ 4 = 0.5

12/4 = 3
除以
算术
根号 x 表示其平方为 x 的正数。 4= 2
…的平方根
实数
复根号 若用极坐标表示复数 z = r exp(i φ )(满足 -π < φ π ),则 z = r exp(i φ /2)。 (-1)= i
…的平方根
复数
||
绝对值 |x | 表示实数轴 (或复平面 )上 x 0 的距离。|3| = 3, |-5| = |5|
|i | = 1, |3+4i | = 5
…的绝对值
!
阶乘 n ! 表示连乘积 1× 2×× n4! = 1 × 2 × 3 × 4 = 24
…的阶乘
组合论
~
概率分布 X ~ D 表示随机变量 X 概率分布为 D X ~ N(0,1)标准正态分布
满足分布
统计学




实质蕴涵 A B 表示 A 真则 B 也真;A 假则 B 不定。

可能和 一样,或者有下面将提到的函数 的意思。

可能和 一样,或者有下面将提到的父集 的意思。
x = 2 x 2 = 4 为真,但 x 2 = 4 x = 2 一般情况下为假(因为 x 可以是 2)。
推出,若…则 …
命题逻辑


实质等价 A B 表示 A 真则 B 真,A 假则 B 假。 x + 5= y +2 x + 3= y
当且仅当
命题逻辑
¬

˜
逻辑非 命题 ¬ A 为真当且仅当 A 为假。

将一条斜线穿过一个符号相当于将 "¬ " 放在该符号前面。
¬ (¬ A ) A
x y ¬ (x = y )
非,不
命题逻辑
逻辑与交运算 A 为真且 B 为真,则命题 A B 为真;否则为假。 n < 4 n >2 n = 3,当 n 自然数
命题逻辑格理论
逻辑或并运算 A B (或都)为真,则命题 A B 为真;若两者都假则命题为假。 n 4 n 2 n 3,当 n 自然数
命题逻辑格理论



异或 A B 刚好有一个为真,则命题 A B 为真。

A B 的意义相同。
(¬ A ) A 恒为真,A A 恒为假。
异或
命题逻辑布尔代数
全称量词 x : P (x ) 表示 P (x ) 对于所有 x 为真。 n N : n 2 n
对所有;对任意;对任一
谓词逻辑
存在量词 x : P (x ) 表示存在至少一个 x 使得 P (x ) 为真。 n N : n 为偶数
存在
谓词逻辑
!
唯一量词 !x : P (x ) 表示有且仅有一个 x 使得 P (x ) 为真。 !n N : n + 5= 2n
存在唯一
谓词逻辑
:=



:
定义 x := y x y 表示 x 定义为 y 的一个名字(注意: 也可表示其它意思,例如全等 )。

P : Q 表示 P 定义为 Q 的逻辑等价。
coshx := (1/2)(expx + exp( x ))

A XORB : (A B ) ¬ (A B )
定义为
所有领域
{ , }
集合 括号{a ,b ,c } 表示 a , b ,c 组成的集合。 N = {0,1,2,…}
…的集合
集合论
{: }

{ | }
集合构造记号 {x : P (x )} 表示所有满足 P (x ) 的 x 的集合。

{x | P (x )} 和 {x : P (x )} 的意义相同。
{n N : n 2 <20}= {0,1,2,3,4}
满足…的集合
集合论


{}
空集 表示没有元素的集合。

{} 的意义相同。
{n N : 1< n 2 < 4}=
空集
集合论


集合属于 a S 表示 a 属于集合 Sa S 表示 a 不属于S(1/2) 1 N

2 1 N
属于;不属于
所有领域


子集 A B 表示 A 的所有元素属于 B

A B 表示 A B A B
A B AQ R
…的子集
集合论


父集 A B 表示 B 的所有元素属于 A

A B 表示 A B A B
A B BR Q
…的父集
集合论
并集 A B 表示包含所有 A B 的元素但不包含任何其他元素的集合。 A B A B = B
…和…的并集
集合论
交集 A B 表示包含所有同时属于 A B 的元素的集合。{x R : x 2 = 1} N = {1}
…和…的交集
集合论
/
补集 A / B 表示所有属于 A 但不属于 B 的元素的集合。{1,2,3,4} / {3,4,5,6} = {1,2}
减;除去
集合论
( )
函数 应用 f (x ) 表示 f x 的值。 f (x ):= x 2 ,则 f (3)= 32 = 9。
f (x )
集合论
优先组合先执行括号内的运算。(8/4)/2= 2/2= 1;8/(4/2)= 8/2= 4
所有领域
ƒ : X
Y
函数 箭头 ƒ :X Y 表示 ƒ 从集合 X 映射到集合 Yƒ :Z N 定义为 ƒ (x )= x 2
从…到…
集合论
o
复合函数 f o g 是一个函数,使得 (f o g )(x ) = f (g (x ))。 f (x ) = 2x ,且 g (x ) = x + 3,则 (f o g )(x ) = 2(x + 3)。
复合
集合论

N

自然数 N 表示 {1,2,3,…},另一定义参见自然数条目。{|a |: a Z }= N
N

Z

整数 Z 表示 {…, 3, 2, 1,0,1,2,3,…}。{a : |a | N }= Z
Z

Q

有理数 Q 表示 {p /q : p ,q Z , q 0}。3.14 Q

π Q
Q

R

实数 R 表示 {limn a n : n N : a n Q , 极限存在}。 π R

( 1) R
R

C

复数 C 表示 {a +bi : a ,b R }。 i = ( 1) C
C
无穷 扩展的实数轴 上大于任何实数的数;通常出现在极限 中。limx 0 1/|x |=
无穷
π
圓周率 π 表示 周长和直径之比。 A = π r ² 是半径为 r 的圆的面积
pi
几何
||||
范数 ||x || 是赋范线性空间 元素 x 的范数。||x +y || ||x || + ||y ||
…的范数;…的长度
线性代数
求和 k =1n a k 表示 a 1 + a 2 + …+ a n . k =14k 2 = 12 + 22 + 32 + 42 = 1+ 4+ 9+ 16= 30
从…到…的和
算术
求积 k =1n a k 表示 a 1a 2· · · a n . k =14 (k + 2)= (1 + 2)(2+ 2)(3+ 2)(4+ 2)= 3× 4× 5× 6= 360
从…到…的积
算术
直积 i =0n Y i 表示所有 (n+1)-元组 (y 0 ,…,y n )。 n =13R = R n
…的直积
集合论
'
导数 f '(x )函数fx 点的倒数,也就是,那里的切线 斜率 f (x )=x 2 , 则 f '(x )=2x
… 撇; …的导数
微积分
不定积分 反导数 f (x )dx 表示导数为f 的函数. x 2 dx = x 3 /3
…的不定积分; …的反导数
微积分
定积分 a b f (x )dx 表示 x -轴和 f x = ax = b 之间的函数图像 所夹成的带符号面积 0b x2 dx = b 3 /3;
从…到…以…为变量的积分
微积分
梯度 f (x1 , , xn ) 偏导数组成的向量 (df / dx 1 , ,df / dx n ). f (x ,y ,z ) = 3xy + z ² f =(3y , 3x , 2z )
…的(delnabla梯度 )
微积分
偏导数 设有f (x1 , , xn ), f/ xif 的对于xi 的当其他变量保持不变时的导数. f (x,y) = x2 y, 则 f / x = 2xy
…的偏导数
微积分
边界 M 表示M 的边界 {x: ||x|| 2} =
{x: || x || = 2}
…的边界
拓扑
次数 f(x) 表示f(x) 的次数( 也记作degf(x) )
…的次数
多项式
垂直 x y 表示 x 垂直于y ; 更一般的 x 正交于y . l mm n l || n .
垂直于
几何
底元素 x = 表示 x 是最小的元素. x : x =
底元素
格理论
蕴含 A B 表示A 蕴含B , 在A 成立的每个 模型 中, B 也成立. A A ¬ A
蕴含;
模型论
推导 x y 表示 y x 导出. A B ¬ B ¬ A
从…导出
命题逻辑 , 谓词逻辑
正则子群 N G 表示 NG 的正则子群. Z (G ) G
是…的正则子群
群论
/
商群 G /H 表示G 其子群H 的商群.{0, a , 2a , b , b +a , b +2a } / {0, b } = {{0, b }, {a , b +a }, {2a , b +2a }}
群论
同构 G H 表示 G 同构于 H Q / {1, 1} V ,
其中 Q 四元数群 V 克莱因四群 .
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值