前缀、中缀、后缀表达式转换详解

本文详细介绍了如何使用表达式树及辅助栈将前缀、中缀和后缀表达式相互转换。通过实例演示了不同表达式的转换步骤,为理解各种表达式形式提供了清晰的指导。


前缀、中缀、后缀表达式转换详解

昨天参加了ebay实习生笔试题,其中一道题目给定了前缀表达式,让我们求转换成中缀表达式时辅助栈的做多情况下容乃几个元素以及中缀表达式的值。当时没有做出来,会后后网上查了些资料,发现很少有文章将前缀、中缀和后缀表达式之间的转化覆盖了,所以写下这篇文章希望能够将前缀、中缀和后缀表达式之间的转化讲解清楚。

一般而言,我们最常遇到的是将中缀表达式转化为后缀表达式,既然这样,首先就来看看中缀表达式转化为后缀表达式的方法。

中缀表达式转后缀表达式:

假定有中缀表达式1 + (( 2 + 3)* 4 ) – 5,请将它转化为后缀表达式。

方法一:利用表达式树

首先将中缀表达式转换为表达式树,然后后序遍历表达式树,所得结果就是后缀表达式。

将中缀表达式转化为表达式树方法:表达式树的树叶是操作数,而其他的节点为操作符,根节点为优先级最低且靠右的操作符(如上述表达式优先级最低的是- 和+,但 + 更靠右,所以根为+),圆括号不包括。如上述中缀表达式转换后的表达式树如下:


经过后序遍历表达式树后得到的后缀表达式为:12 3 + 4 * + 5 –

方法二:利用辅助栈

从左到右遍历中缀表达式的每个操作数和操作符。当读到操作数时,立即把它输出,即成为后缀表达式的一部分;若读到操作符,判断该符号与栈顶符号的优先级,若该符号优先级高于栈顶元素,则将该操作符入栈,否则就一次把栈中运算符弹出并加到后缀表达式尾端,直到遇到优先级低于该操作符的栈元素,然后把该操作符压入栈中。如果遇到”(”,直接压入栈中,如果遇到一个”)”,那么就将栈元素弹出并加到后缀表达式尾端,但左右括号并不输出。最后,如果读到中缀表达式的尾端,将栈元素依次完全弹出并加到后缀表达式尾端。

仍然以上面的表达式为例,其转换过程如下:


利用辅助栈后缀表达式与用表达式树的结果一样,都为:1 2 3 + 4 * + 5 –

后缀表达式转换为中缀表达式

假定有后缀表达式1 2 3 + 4 * +5 – ,请将它转化为前缀表达式。

方法一:利用表达式树

从左到右扫面后缀表达式,一次一个符号读入表达式。如果符号是操作数,那么就建立一个单节点树并将它推入栈中。如果符号是操作符,那么就从栈中弹出两个树T1和T2(T1先弹出)并形成一颗新的树,该树的根就是操作符,它的左、右儿子分别是T2和T1。然后将指向这棵新树的指针压入栈中。


前三个符号是操作数,因此创建三颗单节点树并将指向它们的指针压入栈中。


“+”被读入,因此指向最后两颗树的指针被弹出,形成一颗新树,并将指向新树的指针压入栈中。以下的流程图以相同原理执行。




最后再中序遍历所得的表达式树即得到我们所需的中缀表达式:1+((2+3)*4)-5

中缀表达式转换为前缀表达式

假定有中缀表达式1 + (( 2 + 3)* 4 ) – 5,请将它转化为前缀表达式。

方法一:利用表达式树

先将表达式用表达式树来表示,然后在前序遍历表达式树即得到我们所需的前缀表大式。表达式树前面已经介绍过,这里不再累赘。

此处,经过前序遍历所得前缀表达式为:- + 1 * + 2 3 4 5

方法二:利用辅助栈

首先构造一个运算符栈,然后从右至左扫描中缀表达式。如果是操作数,则直接输出,作为前缀表达式的一个直接转换表达式Temp(最后,前缀表达式由该表达式翻转得到);如果是运算符,则比较优先级:若该运算符优先级大于等于栈顶元素,则将该运算符入栈,否则栈内元素出栈并加到Temp表达式尾端,直到该运算符大于等于栈顶元素的优先级时,再将该运算符压入栈中。遇到右括号直接压入栈中,如果遇到一个左括号,那么就将栈元素弹出并加到Temp表达式尾端,但左右括号并不输出。最后,若运算符栈中还有元素,则将元素一次弹出并加到Temp表达式尾端,最后一步是将Temp表达式翻转。

其过程如下图所示:


从右到左开始扫描,5为数字放入Temp中,-为操作符入栈。


遇到左括号,元素弹出直到遇到右括号为止。



所得前缀表达式为:- + 1 * + 2 3 4 5

前缀表达式转换为中缀表达式:

假定有前缀表达式 - + 1 * + 23 4 5,请将它转化为中缀表达式。

方法一:辅助栈

首先创建一个数字栈。从右到左扫描前缀表达式,如果遇到操作数,则入栈。如果遇到操作符,则将栈顶元素弹出(后扫面的数字位于表达式前面),并和操作符结合写成表达式,作为中缀表达式。如果遇到的操作符优先级大于已存在表达式的最后执行操作符的优先级,则将已存在的表达式加上()。

如下是前缀表达式转为中缀表达式的示意图:

扫描到操作数直接入栈。


扫描到操作符,将两个栈顶元素弹出,并和操作符结合写成表达式。




表达式不是(2+3)*4,因为1比2、3、4后扫描到。


表达是不是5-(1+(2+3)*4),因为5是最早扫面到的数字。

所以中缀表达式为5-(1+(2+3)*4)。


==转载请注明出处,谢谢!http://write.blog.csdn.net/postedit

<think>好的,我现在需要帮助用户了解前中后缀表达式的相互转换方法及实现。首先,我得回忆一下相关的知识,并整理出清晰的步骤。用户提供的引用资料里有几个关键点,我需要结合这些内容来构建答案。 首先,前中后缀表达式的定义。中缀表达式就是我们通常使用的形式,运算符在操作数中间,比如a + b。前缀表达式(波兰式)则是运算符在前面,比如+ a b。后缀表达式(逆波兰式)是运算符在后面,比如a b +。用户提到的引用[5]也提到了这一点,所以可以引用。 接下来是转换方法。用户提供的引用[2]和[3]、[4]提到了不同的转换方法,比如括号法、表达式树法、入法等。我需要将这些方法分步骤解释清楚,特别是中缀前缀和后缀的不同步骤。 首先处理中缀转后缀。根据引用[3]的例子,a + b * c + (d * e + f) * g,转换时需要处理运算符的优先级和括号。这里可能使用来辅助,遇到操作数直接输出,运算符则根据优先级决定入还是出。括号的处理可能需要特殊步骤,比如遇到左括号入,右括号则弹出直到左括号。引用[3]和[4]的例子可以帮助说明。 然后是中缀前缀,这可能和中缀转后缀类似,但需要从右到左扫描,并且结果要反转。例如,引用[5]提到前缀表达式是运算符在前,所以转换时需要考虑操作数的顺序。这里可能需要详细说明步骤,比如反转表达式、处理运算符优先级、最后反转结果。 接下来,前后缀之间的转换。用户提到引用[2]中的括号法和表达式树法。这部分可能需要更简单的步骤,比如将后缀表达式转换为表达式树,然后前序遍历得到前缀,或者通过其他方法直接转换。 还需要考虑实现代码的可能,比如用结构来处理转换过程。用户提供的示例中有Python代码,但这里可能更适合伪代码或步骤说明,因为具体的代码实现可能比较复杂。 另外,用户的问题中还提到了相关问题的生成,我需要根据内容提出几个问题,比如转换方法比较、实际应用、算法实现等,确保覆盖用户可能感兴趣的方面。 在组织内容时,要确保符合系统指令,行内公式用$...$,独立公式用$$...$$,比如表达式示例可能需要用LaTeX排版。同时,引用资料中的内容要在适当的位置标注引用标识,如[^2]、[^3]等。 最后,检查所有步骤是否清晰,逻辑是否连贯,确保用户能够逐步理解转换的方法和实现过程。如果有遗漏或混淆的地方,需要进一步澄清或补充例子说明。</think>### 前中后缀表达式相互转换方法及实现 #### 一、表达式定义 1. **中缀表达式**:运算符位于操作数中间,如$a + b$,符合人类阅读习惯[^5]。 2. **前缀表达式(波兰式)**:运算符位于操作数前,如$+ \, a \, b$。 3. **后缀表达式(逆波兰式)**:运算符位于操作数后,如$a \, b \, +$。 --- #### 二、中缀后缀表达式 **核心步骤**:利用处理运算符优先级和括号。 1. **初始化**:空`S`,结果列表`R`。 2. **扫描中缀表达式**: - **操作数**:直接加入`R`。 - **左括号**`(`:入。 - **右括号**`)`:弹出顶元素加入`R`,直到遇到`(`(左括号出但不输出)。 - **运算符**:弹出中优先级**≥当前运算符**的所有运算符,当前运算符入。 3. **收尾**:将中剩余运算符依次弹出加入`R`[^4]。 **示例**:中缀$a + b \times c + (d \times e + f) \times g$ 转换步骤: $$a \, b \, c \times + d \, e \times f + g \times +$$ (详细过程见引用[3]) --- #### 三、中缀前缀表达式 **核心步骤**:反向扫描中缀表达式,最后反转结果。 1. **反转中缀表达式**:运算符优先级需逆向处理。 2. **类似中缀转后缀**:但比较运算符优先级时方向相反。 3. **反转输出结果**:得到最终前缀表达式[^5]。 **示例**:中缀$(a + b) \times c - d$ 转换步骤: $$- \times + a \, b \, c \, d$$ --- #### 四、前后缀表达式互转 1. **后缀转前缀**: - 利用结构,遇到操作数入,遇到运算符时弹出两个操作数,组合成前缀形式再入。 - 示例:后缀$a \, b \, + \, c \times$ → 前缀$\times + a \, b \, c$。 2. **前缀转后缀**: - 反向扫描前缀表达式,类似后缀转前缀的逆向操作[^2]。 - 示例:前缀$\times + a \, b \, c$ → 后缀$a \, b + c \times$。 --- #### 五、实现方法对比 | 方法 | 时间复杂度 | 空间复杂度 | 适用场景 | |---------------|------------|------------|----------------| | **括号法** | $O(n)$ | $O(n)$ | 手动转换 | | **表达式树法**| $O(n)$ | $O(n)$ | 程序实现 | | **法** | $O(n)$ | $O(n)$ | 算法优化 | --- #### 六、代码实现(中缀转后缀) ```python def infix_to_postfix(expr): precedence = {'+':1, '-':1, '*':2, '/':2, '^':3} stack, output = [], [] for token in expr: if token.isalnum(): output.append(token) elif token == '(': stack.append(token) elif token == ')': while stack[-1] != '(': output.append(stack.pop()) stack.pop() else: while stack and stack[-1] != '(' and precedence[token] <= precedence.get(stack[-1],0): output.append(stack.pop()) stack.append(token) while stack: output.append(stack.pop()) return ' '.join(output) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值