比较javascript学python-2 闭包实现

python源码剖析是本好书,看了能睡不着觉的,可惜为何没有javascript源码剖析,c系能手啥时能来研究v8?


承接 比较javascript学 python-1 对象与类 ,先给出两个语言使用闭包的例子:

 

代码举例:

 

javascript:

 

function outer(){
  var value="inner";
  function inner(){
     alert(value);
  }
  return inner;
}

var c=outer();
c();

 

python:

 

def outer():
 value="inner"
   def inner():
      print value
    return inner

c=outer()
c()
   

实现:


javascript:


根据 ecmascript5 10.3 章 (链接待引):函数运行时会产生 execution context,而execution context中包含 LexicalEnvironment (Identifies the Lexical Environment used to resolve identifier references made by code within this execution context.) 为链状结构,用来解析运行时函数内的变量引用,上例图解:



可见,嵌套函数内的变量访问复杂度是O(函数的嵌套层次), Nicholas C. Zakas专门提到了这个问题(链接待引),当需要多次访问某个外部作用域变量时,要先copy一个到本函数局部变量中来。

 

对应上例的小题大做改动:

 

function outer(){
  var value="inner";
  function inner(){
     var innervalue=value;
     //多次访问
     alert(innervalue);
     alert(innervalue);
     alert(innervalue);
  }
  return inner;
}
var c=outer();
c();

 

PS:对于一些注重性能的javascript引擎譬如webkit,会索引变量,避免传统的作用域链查询,使得变量在作用域链中的深度于chrome,safari中变得无关紧要。(IE还是很紧要的:))

 

来源 High Performance Javascript:

 

python:


根据 python源码剖析(链接待引) ,函数运行时会产生 PyFrameObject (等同ecmascript规范描述的 execution context),而闭包涉及外层作用域变量直接被(指针引用?)放到了内层函数的 PyFrameObject 中的自由变量部分tuple结构中,解析时直接访问本PyFrameObject的tuple结构即可。

 


可见,嵌套函数内的变量访问复杂度是O(1),但是python由于没有变量声明语句存在以下问题:

 

python:

 

(由于没有申明变量关键字!造成不能修改上层作用域的变量,只能引用,直接赋值同名变量就算覆盖了)

 

def outerFunc():
    a=1;
    def innerFunc():
        a=2
    innerFunc()
    print a


outerFunc()

  而只能变通一下:

 

def outerFunc():
    a=[1];
    def innerFunc():
        a[0]=2
    innerFunc()    
    print a

outerFunc()
 

 

Javascript:

 

(function(){
var a=1;

(function(){
a=2;
})();

alert(a);

})();

 

updated: 2011-05-25

从黑客与画家一书中看到这也就是经典的累加器例子:

 

javascript 可以:

 

function foo(n){
  return function(i){
     return n+=i;
  };
}
 

而 python 则必须为:

 

def foo(n):
  s=[n]
  def bar(i) :
     s[0]+=i
   return s[0]
  return bar
   

python 也可以绕过用对象属性来代替原来的词法作用域的变量:

 

def foo(n):
  class acc:
     //构造器
     def __init__(self,s)
        self.s=s
     def inc(self,i):
        self.s+=i
        return self.s
    //词法作用域变量放到对象属性内维护
    return acc(n).inc 

 

或override 隐藏的 __call__,直接封存变量到对象属性

 

class foo:
  def __init__(self,n):
    self.n=n
  //作为函数调用时
  def __call__(self,i)
    self.n+=i
    return self.n

inc=foo(5)
inc(1) //=>6
inc(2) //=>8
 

但这只能解决一层词法作用域问题

 

java 就更不行,只有个近似实现

 

可以在函数中搞个匿名接口子类的对象,而这个匿名接口子类可访问函数内 final 的变量:

 

public interface inc{
  public int call(int i);
}

public static inc foo(final int n){
  return new inc(){
       int s=n;
       public int call(int i){
          return s+=i;
       }
  }
}
 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值