c++ 二叉树的基本操作(包括非递归遍历)

/* Binary Tree */

#include <iostream>
#include <deque>
#include <climits>
using namespace std;

struct Tree
{
	char data;
	Tree *left;
	Tree *right;  
	Tree *parent;  
};

Tree* lookUp(struct Tree *node, char key)
{
	if(node == NULL) return node;

	if(node->data == key) return node;
	else {
		if(node->data < key)
			return lookUp(node->right, key) ;
		else
			return lookUp(node->left, key);
	}
}

Tree* leftMost(struct Tree *node)
{
	if(node == NULL) return NULL;
	while(node->left != NULL)
		node = node->left;
	return node;
}

struct Tree *newTreeNode(int data) 
{
	Tree *node = new Tree;
	node->data = data;
	node->left = NULL;
	node->right = NULL;
	node->parent = NULL;

	return node;
}

struct Tree* insertTreeNode(struct Tree *node, int data)
{
	static Tree *p;
	Tree *retNode;

	if(node != NULL) p = node;

	if(node == NULL)  {
		retNode = newTreeNode(data);
	    	retNode->parent = p;
		return retNode;
	}
	if(data <= node->data ) { 
		p = node;
		node->left = insertTreeNode(node->left,data);
	} 
	else {
		p = node;
		node->right = insertTreeNode(node->right,data);
	} 
	return node;
}

void isBST(struct Tree *node)
{
	static int lastData = INT_MIN;
	if(node == NULL) return;

	isBST(node->left);

	/* check if the given tree is BST */
	if(lastData < node->data) 
		lastData = node->data;
	else {
		cout << "Not a BST" << endl;
		return;
	}

	isBST(node->right);
	return;
}

int treeSize(struct Tree *node)
{
	if(node == NULL) return 0;
	else
		return treeSize(node->left) + 1 + treeSize(node->right);
}

int maxDepth(struct Tree *node)
{
	if(node == NULL) return 0;

	int leftDepth = maxDepth(node->left);
	int rightDepth = maxDepth(node->right);

	return leftDepth > rightDepth ? 
				leftDepth + 1 : rightDepth + 1;
}

int minDepth(struct Tree *node)
{
	if(node == NULL) return 0;

	int leftDepth = minDepth(node->left);
	int rightDepth = minDepth(node->right);

	return leftDepth < rightDepth ? 
				leftDepth + 1 : rightDepth + 1;
}

bool isBalanced(struct Tree *node)
{
	if(maxDepth(node)-minDepth(node) <= 1) 
		return true;
	else
		return false;
}

/* Tree Minimum */
Tree* minTree(struct Tree *node)
{
	if(node == NULL) return NULL;
	while(node->left) 
		node = node -> left;
	return node;
}

/* Tree Maximum */
Tree* maxTree(struct Tree *node)
{
	while(node->right) 
		node = node -> right;
	return node;
}

/* In Order Successor - a node which has the next higher key */ 
Tree *succesorInOrder(struct Tree *node)
{
	/* if the node has right child, seccessor is Tree-Minimum */
	if(node->right != NULL) return minTree(node->right);

	Tree *y = node->parent;
	while(y != NULL && node == y->right) {
		node = y;
		y = y->parent;
	}
	return y;
}

/* In Order Predecessor - a node which has the next lower key */
Tree *predecessorInOrder(struct Tree *node)
{
	/* if the node has left child, predecessor is Tree-Maximum */
	if(node->left != NULL) return maxTree(node->left);

	Tree *y = node->parent;
	/* if it does not have a left child, 
	predecessor is its first left ancestor */
	while(y != NULL && node == y->left) {
		node = y;
		y = y->parent;
	}
	return y;
}
 
Tree *lowestCommonAncestor(Tree *root, Tree *p, Tree *q) 
{
	Tree *left, *right;
	if(root == NULL) return NULL;
	if(root->left == p || root->left == q
		|| root->right == p || root->right == q) return root;
	else {
		left = lowestCommonAncestor(root->left,p,q);
		right = lowestCommonAncestor(root->right, p,q);
		if(left && right) 
			return root;
		else 
			return (left) ? left : right;
	}	
}

void clear(struct Tree *node)
{
	if(node != NULL) {
		clear(node->left);
		clear(node->right);
		delete node;
	}
}
/* print tree in order */
/* 1. Traverse the left subtree. 
   2. Visit the root. 
   3. Traverse the right subtree. 
*/

void printTreeInOrder(struct Tree *node)
{
	static int lastData = INT_MIN;
	if(node == NULL) return;

	printTreeInOrder(node->left);
	cout << node->data << " ";
	printTreeInOrder(node->right);
}

/* print tree in postorder*/
/* 1. Traverse the left subtree. 
   2. Traverse the right subtree. 
   3. Visit the root. 
*/
void printTreePostOrder(struct Tree *node)
{
	if(node == NULL) return;

	printTreePostOrder(node->left);
	printTreePostOrder(node->right);
	cout << node->data << " ";
}

/* print in preorder */
/* 1. Visit the root. 
   2. Traverse the left subtree. 
   3. Traverse the right subtree. 
*/
void printTreePreOrder(struct Tree *node)
{
	if(node == NULL) return;

	cout << node->data << " ";
	printTreePreOrder(node->left);
	printTreePreOrder(node->right);
}

/* printing array */
void printThisPath(int path[], int n)
{
	for(int i = 0; i < n; i++)
		cout << (char)path[i] << " ";
	cout << endl;
}

/* recursion routine to find path */
void pathFinder(struct Tree *node, int path[], int pathLength)
{
	if(node == NULL) return;
	path[pathLength++] = node->data;

	/* Leaf node is the end of a path. 
	   So, let's print the path */
	if(node->left == NULL && node->right == NULL)
		printThisPath(path, pathLength);
	else {
		pathFinder(node->left, path, pathLength);
		pathFinder(node->right, path, pathLength);
	}
}

/*printing all paths :
Given a binary tree, print out all of its root-to-leaf 
paths, one per line. Uses a recursive helper to do the work. */

void printAllPaths(struct Tree *root)
{
	int path[100];
	pathFinder(root,path,0);
}

bool matchTree(Tree *r1, Tree *r2)
{
	/* Nothing left in the subtree */
	if(r1 == NULL && r2 == NULL)
		return true;
	/* Big tree empty and subtree not found */
	if(r1 == NULL || r2 == NULL)
		return false;
	/* Not matching */
	if(r1->data != r2->data)
		return false;
	return (matchTree(r1->left, r2->left) && 
			matchTree(r1->right, r2->right));
}

bool subTree(Tree *r1, Tree *r2)
{
	/*Big tree empty and subtree not found */
	if(r1 == NULL)
		return false;
	if(r1->data == r2->data)
		if(matchTree(r1, r2)) return true;
	return (subTree(r1->left, r2) || subTree(r1->right, r2));
}

bool isSubTree(Tree *r1, Tree *r2)
{
	/* Empty tree is subtree */
	if(r2 == NULL) 
		return true;
	else
		return subTree(r1, r2);
}

/* change a tree so that the roles of the left 
and right hand pointers are swapped at every node */
void mirror(Tree *r)
{
	if(r == NULL) return;
	
	Tree *tmp;
	mirror(r->left);
	mirror(r->right);

	/* swap pointers */
	tmp = r->right;
	r->right = r->left;
	r->left = tmp;
}

/* create a new tree from a sorted array */
Tree *addToBST(char arr[], int start, int end)
{
	if(end < start) return NULL;
	int mid = (start + end)/2;

	Tree *r = new Tree;
	r->data = arr[mid];
	r->left = addToBST(arr, start, mid-1);
	r->right = addToBST(arr, mid+1, end);
	return r;
}

Tree *createMinimalBST(char arr[], int size)
{
	return addToBST(arr,0,size-1);
}

/* Breadth first traversal using queue */
void BreadthFirstTraversal(Tree *root)
{
	if (root == NULL) return;
	deque <Tree *> queue;
	queue.push_back(root);

	while (!queue.empty()) {
		Tree *p = queue.front();
		cout << p->data << " ";
		queue.pop_front();

		if (p->left != NULL)
			queue.push_back(p->left);
		if (p->right != NULL)
			queue.push_back(p->right);
	}
	cout << endl;
} 

/* find n-th max node from a tree */
void NthMax(struct Tree* t)
{        
	static int n_th_max = 5;
	static int num = 0;
	if(t == NULL) return;        
	NthMax(t->right);        
	num++;        
	if(num == n_th_max)                
		cout << n_th_max << "-th maximum data is " << t->data << endl;        
	NthMax(t->left);
}

/* Converting a BST into an Array */ 
void TreeToArray(struct Tree *node, int a[]){ 
	static int pos = 0; 
  
	if(node){ 
		TreeToArray(node->left,a); 
		a[pos++] = node->data; 
		TreeToArray(node->right,a); 
      } 
} 

int main(int argc, char **argv)
{
	char ch, ch1, ch2;
	Tree *found;
	Tree *succ;
	Tree *pred;
	Tree *ancestor;
	char charArr[9] 
		= {'A','B','C','D','E','F','G','H','I'};

	Tree *root = newTreeNode('F');
	insertTreeNode(root,'B');
	insertTreeNode(root,'A');
	insertTreeNode(root,'D');
	insertTreeNode(root,'C');  
	insertTreeNode(root,'E');
	insertTreeNode(root,'G');
	insertTreeNode(root,'I');
	insertTreeNode(root,'H');

	/* is the tree BST? */
	isBST(root);

	/* size of tree */
	cout << "size = " << treeSize(root) << endl;

	/* max depth */
	cout << "max depth = " << maxDepth(root) << endl;

	/* min depth */
	cout << "min depth = " << minDepth(root) << endl;

	/* balanced tree? */
	if(isBalanced(root))
		cout << "This tree is balanced!\n";
	else
		cout << "This tree is not balanced!\n";

	/* min value of the tree*/
	if(root) 
		cout << "Min value = " << minTree(root)->data << endl;

	/* max value of the tree*/
	if(root) 
		cout << "Max value = " << maxTree(root)->data << endl;

	ch = 'B';
	found = lookUp(root,ch);
	if(found) {
		cout << "Min value of subtree " << ch << " as a root is "
			 << minTree(found)->data << endl;
		cout << "Max value of subtree " << ch << " as a root is "
			 << maxTree(found)->data << endl;
	}

	ch = 'B';
	found = lookUp(root,ch);
	if(found) {
		succ = succesorInOrder(found);
		if(succ)
			cout << "In Order Successor of " << ch << " is "
			 << succesorInOrder(found)->data << endl;
		else 
			cout << "In Order Successor of " << ch << " is None\n";
	}

	ch = 'E';
	found = lookUp(root,ch);
	if(found) {
		succ = succesorInOrder(found);
		if(succ)
			cout << "In Order Successor of " << ch << " is "
			 << succesorInOrder(found)->data << endl;
		else 
			cout << "In Order Successor of " << ch << " is None\n";
	}

	ch = 'I';
	found = lookUp(root,ch);
	if(found) {
		succ = succesorInOrder(found);
		if(succ)
			cout << "In Order Successor of " << ch << " is "
			 << succesorInOrder(found)->data << endl;
		else 
			cout << "In Order Successor of " << ch << " is None\n";
	}

	ch = 'B';
	found = lookUp(root,ch);
	if(found) {
		pred = predecessorInOrder(found);
		if(pred)
			cout << "In Order Predecessor of " << ch << " is "
			 << predecessorInOrder(found)->data << endl;
		else 
			cout << "In Order Predecessor of " << ch << " is None\n";
	}

	ch = 'E';
	found = lookUp(root,ch);
	if(found) {
		pred = predecessorInOrder(found);
		if(pred)
			cout << "In Order Predecessor of " << ch << " is "
			 << predecessorInOrder(found)->data << endl;
		else 
			cout << "In Order Predecessor of " << ch << " is None\n";
	}

	ch = 'I';
	found = lookUp(root,ch);
	if(found) {
		pred = predecessorInOrder(found);
		if(pred)
			cout << "In Order Predecessor of " << ch << " is "
			 << predecessorInOrder(found)->data << endl;
		else 
			cout << "In Order Predecessor of " << ch << " is None\n";
	}

	/* Lowest Common Ancestor */
	ch1 = 'A';
	ch2 = 'C';
	ancestor = 
		lowestCommonAncestor(root, 
			lookUp(root,ch1), lookUp(root,ch2));
	if(ancestor) 
		cout << "The lowest common ancestor of " << ch1 << " and "
		<< ch2 << " is " << ancestor->data << endl;

	ch1 = 'E';
	ch2 = 'H';
	ancestor = 
		lowestCommonAncestor(root, 
			lookUp(root,ch1), lookUp(root,ch2));
	if(ancestor) 
		cout << "The lowest common ancestor of " << ch1 << " and "
		<< ch2 << " is " << ancestor->data << endl;

	/* print tree in order */
	cout << "increasing sort order\n";
	printTreeInOrder(root);
	cout << endl;

	/* print tree in postorder*/
	cout << "post order \n";
	printTreePostOrder(root);
	cout << endl;

	/* print tree in preorder*/
	cout << "pre order \n";
	printTreePreOrder(root);
	cout << endl;

	/* lookUp */
	ch = 'D';
	found = lookUp(root,ch);
	if(found) 
		cout << found->data << " is in the tree\n";
	else
		cout << ch << " is not in the tree\n";

	/* lookUp */
	ch = 'M';
	found = lookUp(root,ch);
	if(found) 
		cout << found->data << " is in the tree\n";
	else
		cout << ch << " is not in the tree\n";

	/* printing all paths :
	Given a binary tree, print out all of its root-to-leaf 
	paths, one per line. Uses a recursive helper to do the work. */
	cout << "printing paths ..." << endl;
	printAllPaths(root); 

	/* find n-th maximum node */
	NthMax(root);


	/* convert the tree into an array */
	int treeSz = treeSize(root);
	int *array = new int[treeSz];
	TreeToArray(root,array);
	cout << "New array: ";
	for (int i = 0; i < treeSz; i++)
		cout << (char)array[i] << ' ';
	cout << endl;
	delete [] array;

	/* subtree */
	Tree *root2 = newTreeNode('D');
	insertTreeNode(root2,'C');  
	insertTreeNode(root2,'E');
	cout << "1-2 subtree: " << isSubTree(root, root2) << endl;

	Tree *root3 = newTreeNode('B');
	insertTreeNode(root3,'A');  
	insertTreeNode(root3,'D');
	insertTreeNode(root3,'C');  
	insertTreeNode(root3,'E');
	cout << "1-3 subtree: " << isSubTree(root, root3) << endl;

	Tree *root4 = newTreeNode('B'); 
	insertTreeNode(root4,'D');
	insertTreeNode(root4,'C');  
	insertTreeNode(root4,'E');
	cout << "1-4 subtree: " << isSubTree(root, root4) << endl;

	cout << "2-3 subtree: " << isSubTree(root2, root3) << endl;
	cout << "3-2 subtree: " << isSubTree(root3, root2) << endl;

	/* swap left and right */
	mirror(root);

	/* deleting a tree */
	clear(root);

	/* make a new tree with minimal depth */
	Tree *newRoot = createMinimalBST(charArr,9);

	/* Traversing level-order. 
	We visit every node on a level before going to a lower level. 
	This is also called Breadth-first traversal.*/
	cout << "printing with Breadth-first traversal" << endl;
	BreadthFirstTraversal(newRoot);

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值