Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
Find the minimum element.
You may assume no duplicate exists in the array.
给定一个有序的数组,不过数组通过一个支点进行了旋转,让我们从中找到最下的元素。我们如果直接找时间复杂度为O(n), 因为这是有序数组进行了旋转,我们可以考虑二分查找法,这样时间复杂度为O(logn)。二分查找的关键在于找到一个条件进行判断,然后可以省略掉一半元素。在这这题目中,我们通过中间元素与最右边的元素进行比较,如果中间元素array[m] > array[right],那么说明做部分为有序的,并且最小值肯定在右半部分,这是我们只需要移动左指针,指向m + 1位置,然后对后半部分进行搜索。如果中间元素小于最右边元素,说明最小值在左部分,这是让右指针指向m位置,因为m位置的元素可能为最小值,然后查找左半部分。代码如下:
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
Find the minimum element.
You may assume no duplicate exists in the array.
给定一个有序的数组,不过数组通过一个支点进行了旋转,让我们从中找到最下的元素。我们如果直接找时间复杂度为O(n), 因为这是有序数组进行了旋转,我们可以考虑二分查找法,这样时间复杂度为O(logn)。二分查找的关键在于找到一个条件进行判断,然后可以省略掉一半元素。在这这题目中,我们通过中间元素与最右边的元素进行比较,如果中间元素array[m] > array[right],那么说明做部分为有序的,并且最小值肯定在右半部分,这是我们只需要移动左指针,指向m + 1位置,然后对后半部分进行搜索。如果中间元素小于最右边元素,说明最小值在左部分,这是让右指针指向m位置,因为m位置的元素可能为最小值,然后查找左半部分。代码如下:
public class Solution {
public int findMin(int[] nums) {
if(nums == null || nums.length == 0) return -1;
int l = 0;
int r = nums.length - 1;
while(l < r) {
int m = l + (r - l) / 2;
if(nums[m] > nums[r]) {
l = m + 1;
} else {
r = m;
}
}
return nums[l];
}
}