Layar新推AR应用Stiktu,标记和分享真实物品

早前,雷锋网曾对AR浏览器LayarLayar Vision应用进行过报道。日前,Layar又推出了一款新的AR应用Stiktu,帮助用户在任何扫描界面上添加各种个性化内容。该应用同时对AndroidiOS平台开放。

通过Stiktu,用户可在真实世界的物品上尽情表达自己,并与好友进行分享。如可以分享自己喜欢的东西、表达对某事物的喜爱,当然也可抨击或嘲讽不喜欢的物品等。

该应用使用极其简单。用户先用智能手机扫描图像,然后添加文字、图片、贴纸、素描等即可。当对象为平滑光亮的物品时,如海报、杂志和产品包装等,该应用的使用效果最佳。

除了能与FacebookTwitter好友分享自己的作品外,用户还可浏览最受欢迎和最新发布的作品,并“Like”自己喜欢的内容。另外,用户还可关注其他人,查看他发布的所有作品,及时了解最新动态。

昨天,该应用已在欧洲9个国家发布,包括英国、法国和德国等。

Via TNW

sarah_long雷锋网专稿,转载请注明!)
在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值