【100题】第十一题(二叉树中节点的最大距离)

一,题目:

如果把二叉树看成一个图,父子节点之间的连线看成是双向的(无向图),定义"距离"为两节点之间边的个数。写一个程序,求一棵二叉树中相距最远的两个节点之间的距离。

二,思路

误导思路:不要以为求树的高度。

正确思路:求“图”中任意两个节点之间,相距最远的的两个节点之间的距离。

求解步骤:A,经过根节点,左边最深的点到右边最深的点的距离。

B,不经过根节点,而是左子树或右子树中最大距离,取其大者。

三,图解

情况A: 情况B:

A A

/ \/ \

B C B O

/ \ / \ / \

D E F G C D

/\

E F

/\

G H

情况A:最大距离经过顶点D-B-A-C-F(其中之一)

情况B:最大距离不经过顶点G-E-C-B-D-F-H(其中之一)

四,源码

 #include "stdio.h"
 #include"stdlib.h" 
 struct NODE
    {
         NODE* pLeft;            // 左子树
         NODE* pRight;          // 右子树
         int nMaxLeft;          // 左子树中的最长距离
         int nMaxRight;         // 右子树中的最长距离
         int chValue;        // 该节点的值
    };
   
    int nMaxLen = 0;
   
    // 寻找树中最长的两段距离
    void FindMaxLen(NODE* pRoot)
    {
         // 遍历到叶子节点,返回
         if(pRoot == NULL)
              return;
 
         // 如果左子树为空,那么该节点的左边最长距离为0
         if(pRoot -> pLeft == NULL)   
              pRoot -> nMaxLeft = 0;
         
   
         // 如果右子树为空,那么该节点的右边最长距离为0
         if(pRoot -> pRight == NULL)   
              pRoot -> nMaxRight = 0;
         
   
         // 如果左子树不为空,递归寻找左子树最长距离
         if(pRoot -> pLeft != NULL)       
              FindMaxLen(pRoot -> pLeft);
         
   
         // 如果右子树不为空,递归寻找右子树最长距离
         if(pRoot -> pRight != NULL)      
              FindMaxLen(pRoot -> pRight);
         
   
         // 计算左子树最长节点距离
         if(pRoot -> pLeft != NULL)
         {
              int nTempMax = 0;
              if(pRoot -> pLeft -> nMaxLeft > pRoot -> pLeft -> nMaxRight)
              {
                   nTempMax = pRoot -> pLeft -> nMaxLeft;
              }
              else
              {
                   nTempMax = pRoot -> pLeft -> nMaxRight;
              }
              pRoot -> nMaxLeft = nTempMax + 1;
         }
   
         // 计算右子树最长节点距离
         if(pRoot -> pRight != NULL)
         {
              int nTempMax = 0;
              if(pRoot -> pRight -> nMaxLeft > pRoot -> pRight -> nMaxRight)
              {
                   nTempMax = pRoot -> pRight -> nMaxLeft;
              }
              else
              {
                   nTempMax = pRoot -> pRight -> nMaxRight;
              }
              pRoot -> nMaxRight = nTempMax + 1;
         }
   
         // 更新最长距离
         if(pRoot -> nMaxLeft + pRoot -> nMaxRight > nMaxLen)
         {
              nMaxLen = pRoot -> nMaxLeft + pRoot -> nMaxRight;
         }
     }
         
NODE *createTree()
{
	NODE *root;
	int data;
	printf("input data:");
	scanf("%d",&data);
	//printf("output data:%d\n",data);
	
	if(data==0)
	  root=NULL;
    else/*根左右 前序建立二叉树*/
    {
    	root=(NODE*)malloc(sizeof(NODE));
    	root->chValue=data;
    	root->pLeft=createTree();
    	root->pRight=createTree();	
    }
	return root;
} 
int main()
{
	NODE  *root;
	root=createTree();
	FindMaxLen(root);
	
	printf("%d",nMaxLen);
	return 0;
}

第二种解法:

这个问题的核心是,情况A 及 B 需要不同的信息: A 需要子树的最大深度,B 需要子树的最大距离。只要函数能在一个节点同时计算及传回这两个信息,代码就可以很简单:

#include <iostream> 
  
using namespace std; 
  
struct NODE 
{ 
    NODE *pLeft; 
    NODE *pRight; 
}; 
  
struct RESULT 
{ 
    int nMaxDistance; 
    int nMaxDepth; 
}; 
  
RESULT GetMaximumDistance(NODE* root) 
{ 
    if (!root) 
    { 
        RESULT empty = { 0, -1 };   // trick: nMaxDepth is -1 and then caller will plus 1 to balance it as zero. 
        return empty; 
    } 
  
    RESULT lhs = GetMaximumDistance(root->pLeft); 
    RESULT rhs = GetMaximumDistance(root->pRight); 
  
    RESULT result; 
    result.nMaxDepth = max(lhs.nMaxDepth + 1, rhs.nMaxDepth + 1); 
    result.nMaxDistance = max(max(lhs.nMaxDistance, rhs.nMaxDistance), lhs.nMaxDepth + rhs.nMaxDepth + 2); 
    return result; 
}
void Link(NODE* nodes, int parent, int left, int right) 
{ 
    if (left != -1) 
        nodes[parent].pLeft = &nodes[left];  
  
    if (right != -1) 
        nodes[parent].pRight = &nodes[right]; 
} 
  
void main() 
{ 
    // P. 241 Graph 3-12 
    NODE test1[9] = { 0 }; 
    Link(test1, 0, 1, 2); 
    Link(test1, 1, 3, 4); 
    Link(test1, 2, 5, 6); 
    Link(test1, 3, 7, -1); 
    Link(test1, 5, -1, 8); 
    cout << "test1: " << GetMaximumDistance(&test1[0]).nMaxDistance << endl; 
  
    // P. 242 Graph 3-13 left 
    NODE test2[4] = { 0 }; 
    Link(test2, 0, 1, 2); 
    Link(test2, 1, 3, -1); 
    cout << "test2: " << GetMaximumDistance(&test2[0]).nMaxDistance << endl; 
  
    // P. 242 Graph 3-13 right 
    NODE test3[9] = { 0 }; 
    Link(test3, 0, -1, 1); 
    Link(test3, 1, 2, 3); 
    Link(test3, 2, 4, -1); 
    Link(test3, 3, 5, 6); 
    Link(test3, 4, 7, -1); 
    Link(test3, 5, -1, 8); 
    cout << "test3: " << GetMaximumDistance(&test3[0]).nMaxDistance << endl; 
  
    // P. 242 Graph 3-14 
    // Same as Graph 3-2, not test 
  
    // P. 243 Graph 3-15 
    NODE test4[9] = { 0 }; 
    Link(test4, 0, 1, 2); 
    Link(test4, 1, 3, 4); 
    Link(test4, 3, 5, 6); 
    Link(test4, 5, 7, -1); 
    Link(test4, 6, -1, 8); 
    cout << "test4: " << GetMaximumDistance(&test4[0]).nMaxDistance << endl; 
}


计算 result 的代码很清楚;nMaxDepth 就是左子树和右子树的深度加1;nMaxDistance 则取 A 和 B 情况的最大值。

为了减少 NULL 的条件测试,进入函数时,如果节点为 NULL,会传回一个 empty 变量。比较奇怪的是 empty.nMaxDepth = -1,目的是让调用方 +1 后,把当前的不存在的 (NULL) 子树当成最大深度为 0。

除了提高了可读性,这个解法的另一个优点是减少了 O(节点数目) 大小的侵入式资料,而改为使用 O(树的最大深度) 大小的栈空间。这个设计使函数完全没有副作用(side effect)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值