POJ 2676 3074 3076 数独3题 Dancing Links

今天就一直在做DLX的题目了,目前也只是入门而已,就做了几个数独的问题

将数独转化为DLX的模型是很繁琐的一部分。

首先,必须明白,有多少种选择就要建立多少行,有多少个条件约束就要建立多少个列

对于一个9*9的数独,我们可以在81个位置中选择一个地方,放1~9的数,所以选择数目就是9*9*9了,就要建立这么些个行

而约束呢,首先是81个格子,每个格子有且只能有1个数,那么就是9*9个列,然后对于某个位置的某个数,同一行的不能再有一样的数,也是9*9个列,同一列,同一宫都是一个原理,所以总共就是4*9*9个列了

然后问题就转化为了,从9*9*9行中选择某些行,使得每一列都只有1个1,这里的1代表的就是唯一性,比如每一宫中只能有1个1,如果你选的两行致使1个宫内有两个1,那么显然这是不符合约束的,必然在某一列中这个冲突会得到体现。同样的是同一列和同一行。

对于每个格子有且只能有1个数这个条件,也是不可少的。虽说插入的时候只要放置的位置不同,一定不会产生冲突,但是加入此条件就能保证最后输出的结果,每一格都充满了数字。

然后建图的时候就是按着行和列用十字循环链表建图了。


怎么说呢,今天这三道题做的,感觉学了不少东西,但是写起来,却又写挫了,16*16那个数独也不知他们怎么写的,我花了300+ms,前边一堆100ms以内的

首先是2676

/*
ID: sdj22251
PROG: inflate
LANG: C++
*/
#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#define MAXN 9*9*9*9
#define INF 1000000000
#define N 9
#define M 9*9*9+5
using namespace std;
int L[MAXN], R[MAXN], C[MAXN], S[M], U[MAXN], D[MAXN], H[M], O[M], X[MAXN]; //X用来存储行,C用来存储列,H用来存储每行中的第一个结点,O用来存储结果
int cnt, head;
char mp[N + 5][N + 5], ans[N * N + 5];
bool vis[N * N * 4 + 5];
void link(int r, int c)
{
    S[c]++;
    C[cnt] = c;
    X[cnt] = r;
    U[cnt] = c;
    D[cnt] = D[c];
    U[D[c]] = cnt;
    D[c] = cnt;
    if(H[r] == -1)
    {
        H[r] = cnt;
        L[cnt] = R[cnt] = cnt;
    }
    else
    {
        L[cnt] = H[r];
        R[cnt] = R[H[r]];
        L[R[H[r]]] = cnt;
        R[H[r]] = cnt;
    }
    cnt++;
}
void init()
{
    cnt = 0;
    head = 0;
    for(int i = 0; i <= N * N * 4; i++)
    {
        S[i] = 0;
        vis[i] = 0;
        D[i] = U[i] = i;
        R[i] = (i + 1) % (N * N * 4 + 1);
        L[i] = (i + N * N * 4) % (N * N * 4 + 1);
        cnt++;
    }
    memset(H, -1, sizeof(H));
}
void cal(int &r, int &cx, int &cy, int &ck, int &cg, int i, int j, int k)
{
    r = (i * N + j) * N + k - 1; //代表所属的行 
    cg = i * N + j + 1;   //代表的是数独中i,j位置所属的列
    cx = N * N + i * N + k;  //代表数独中同一行所属的列
    cy = N * N * 2 + j * N + k; //代表数独中同一列所属的列
    int LN = (int)sqrt(N * 1.0); 
    ck = N * N * 3 + (i / LN * LN + j / LN) * N + k;//代表数独中同一宫所属的列
}
void readdata()
{
    int r, cx, cy, ck, cg;
    for(int i = 0; i < N; i++)
        scanf("%s", mp[i]);
    for(int i = 0; i < N; i++)
        for(int j = 0; j < N; j++)
            if(mp[i][j] != '0')
            {
                cal(r, cx, cy, ck, cg, i, j, mp[i][j] - '0');
                link(r, cx);
                link(r, cy);
                link(r, ck);
                link(r, cg);
                vis[cx] = vis[cy] = vis[ck] = vis[cg] = 1;
            }
    for(int i = 0; i < N; i++)
        for(int j = 0; j < N; j++)
            for(int k = 1; k <= N; k++)
            {
                cal(r, cx, cy, ck, cg, i, j, k);
                if(vis[cx] || vis[cy] || vis[ck] || vis[cg]) continue;
                link(r, cx);
                link(r, cy);
                link(r, ck);
                link(r, cg);
            }
}
void removes(int c)
{
    L[R[c]] = L[c];
    R[L[c]] = R[c];
    for(int i = D[c]; i != c; i = D[i])
        for(int j = R[i]; j != i; j = R[j])
        {
            U[D[j]] = U[j];
            D[U[j]] = D[j];
            S[C[j]]--;
        }
}
void resumes(int c)
{
    for(int i = U[c]; i != c; i = U[i])
        for(int j = L[i]; j != i; j = L[j])
        {
            U[D[j]] = j;
            D[U[j]] = j;
            S[C[j]]++;
        }
    L[R[c]] = c;
    R[L[c]] = c;
}
bool dfs(int k)
{
    if(R[head] == head)
    {
        for(int i = 0; i < k; i++) //根据所选择的行 能推出选择的位置和数字
            ans[X[O[i]] / N] = X[O[i]] % 9 + '1';
        for(int i = 0; i < N * N; i++)
        {
            printf("%c", ans[i]);
            if((i + 1) % N == 0) printf("\n");
        }
        return true;
    }
    int s = INF, c;
    for(int i = R[head]; i != head; i = R[i])
        if(s > S[i])
        {
            s = S[i];
            c = i;
        }
    removes(c);
    for(int i = U[c]; i != c; i = U[i])
    {
        O[k] = i;
        for(int j = R[i]; j != i; j = R[j])
            removes(C[j]);
        if(dfs(k + 1)) return true;
        for(int j = L[i]; j != i; j = L[j])
            resumes(C[j]);
    }
    resumes(c);
    return false;
}
int main()
{
    int T;
    scanf("%d", &T);
    while(T--)
    {
        init();
        readdata();
        dfs(0);
    }
    return 0;
}

然后是3074


/*
ID: sdj22251
PROG: inflate
LANG: C++
*/
#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#define MAXN 9*9*9*9
#define INF 1000000000
#define N 9
#define M 9*9*9+5
using namespace std;
int L[MAXN], R[MAXN], C[MAXN], S[M], U[MAXN], D[MAXN], H[M], O[M], X[MAXN];
int cnt, head;
char mp[N * N + 5], ans[N * N + 5];
bool vis[N * N * 4 + 5];
void link(int r, int c)
{
    S[c]++;
    C[cnt] = c;
    X[cnt] = r;
    U[cnt] = c;
    D[cnt] = D[c];
    U[D[c]] = cnt;
    D[c] = cnt;
    if(H[r] == -1)
    {
        H[r] = cnt;
        L[cnt] = R[cnt] = cnt;
    }
    else
    {
        L[cnt] = H[r];
        R[cnt] = R[H[r]];
        L[R[H[r]]] = cnt;
        R[H[r]] = cnt;
    }
    cnt++;
}
void init()
{
    cnt = 0;
    head = 0;
    for(int i = 0; i <= N * N * 4; i++)
    {
        S[i] = 0;
        vis[i] = 0;
        D[i] = U[i] = i;
        R[i] = (i + 1) % (N * N * 4 + 1);
        L[i] = (i + N * N * 4) % (N * N * 4 + 1);
        cnt++;
    }
    memset(H, -1, sizeof(H));
}
void cal(int &r, int &cx, int &cy, int &ck, int &cg, int i, int j, int k)
{
    r = (i * N + j) * N + k - 1;
    cg = i * N + j + 1;
    cx = N * N + i * N + k;
    cy = N * N * 2 + j * N + k;
    int LN = (int)sqrt(N * 1.0);
    ck = N * N * 3 + (i / LN * LN + j / LN) * N + k;
}
void readdata()
{
    int r, cx, cy, ck, cg;
    for(int i = 0; i < N; i++)
        for(int j = 0; j < N; j++)
            if(mp[i * N + j] != '.')
            {
                cal(r, cx, cy, ck, cg, i, j, mp[i * N + j] - '0');
                link(r, cx);
                link(r, cy);
                link(r, ck);
                link(r, cg);
                vis[cx] = vis[cy] = vis[ck] = vis[cg] = 1;
            }
    for(int i = 0; i < N; i++)
        for(int j = 0; j < N; j++)
            if(mp[i * N + j] == '.')
            for(int k = 1; k <= N; k++)
            {
                cal(r, cx, cy, ck, cg, i, j, k);
                if(vis[cx] || vis[cy] || vis[ck] || vis[cg]) continue;
                link(r, cx);
                link(r, cy);
                link(r, ck);
                link(r, cg);
            }
}
void removes(int c)
{
    L[R[c]] = L[c];
    R[L[c]] = R[c];
    for(int i = D[c]; i != c; i = D[i])
        for(int j = R[i]; j != i; j = R[j])
        {
            U[D[j]] = U[j];
            D[U[j]] = D[j];
            S[C[j]]--;
        }
}
void resumes(int c)
{
    for(int i = U[c]; i != c; i = U[i])
        for(int j = L[i]; j != i; j = L[j])
        {
            U[D[j]] = j;
            D[U[j]] = j;
            S[C[j]]++;
        }
    L[R[c]] = c;
    R[L[c]] = c;
}
bool dfs(int k)
{
    if(R[head] == head)
    {
        for(int i = 0; i < k; i++)
            ans[X[O[i]] / N] = X[O[i]] % N + '1';
        for(int i = 0; i < N * N; i++)
        {
            printf("%c", ans[i]);
        }
        printf("\n");
        return true;
    }
    int s = INF, c;
    for(int i = R[head]; i != head; i = R[i])
        if(s > S[i])
        {
            s = S[i];
            c = i;
        }
    removes(c);
    for(int i = U[c]; i != c; i = U[i])
    {
        O[k] = i;
        for(int j = R[i]; j != i; j = R[j])
            removes(C[j]);
        if(dfs(k + 1)) return true;
        for(int j = L[i]; j != i; j = L[j])
            resumes(C[j]);
    }
    resumes(c);
    return false;
}
int main()
{
    while(scanf("%s", mp) != EOF && mp[0] != 'e')
    {
        init();
        readdata();
        dfs(0);
    }
    return 0;
}

最后是3076

这是16*16的数独

/*
ID: sdj22251
PROG: inflate
LANG: C++
*/
#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#define MAXN 16*16*16*16+16*16*4
#define INF 1000000000
#define N 16
#define M 16*16*16+5
using namespace std;
int L[MAXN], R[MAXN], C[MAXN], S[M], U[MAXN], D[MAXN], H[M], O[M], X[MAXN];
int cnt, head;
char mp[N + 5][N + 5], ans[N * N + 5];
bool vis[N * N * 4 + 5];
void link(int r, int c)
{
    S[c]++;
    C[cnt] = c;
    X[cnt] = r;
    U[cnt] = c;
    D[cnt] = D[c];
    U[D[c]] = cnt;
    D[c] = cnt;
    if(H[r] == -1)
    {
        H[r] = cnt;
        L[cnt] = R[cnt] = cnt;
    }
    else
    {
        L[cnt] = H[r];
        R[cnt] = R[H[r]];
        L[R[H[r]]] = cnt;
        R[H[r]] = cnt;
    }
    cnt++;
}
void init()
{
    cnt = 0;
    head = 0;
    for(int i = 0; i <= N * N * 4; i++)
    {
        S[i] = 0;
        vis[i] = 0;
        D[i] = U[i] = i;
        R[i] = (i + 1) % (N * N * 4 + 1);
        L[i] = (i + N * N * 4) % (N * N * 4 + 1);
        cnt++;
    }
    memset(H, -1, sizeof(H));
}
void cal(int &r, int &cx, int &cy, int &ck, int &cg, int i, int j, int k)
{
    r = (i * N + j) * N + k - 1;
    cg = i * N + j + 1;
    cx = N * N + i * N + k;
    cy = N * N * 2 + j * N + k;
    int LN = (int)sqrt(N * 1.0);
    ck = N * N * 3 + (i / LN * LN + j / LN) * N + k;
}
void readdata()
{
    int r, cx, cy, ck, cg;
    for(int i = 1; i < N; i++)
        scanf("%s", mp[i]);
    for(int i = 0; i < N; i++)
        for(int j = 0; j < N; j++)
            if(mp[i][j] != '-')
            {
                cal(r, cx, cy, ck, cg, i, j, mp[i][j] - 'A' + 1);
                link(r, cx);
                link(r, cy);
                link(r, ck);
                link(r, cg);
                vis[cx] = vis[cy] = vis[ck] = vis[cg] = 1;
            }
    for(int i = 0; i < N; i++)
        for(int j = 0; j < N; j++)
            if(mp[i][j] == '-')
            for(int k = 1; k <= N; k++)
            {
                cal(r, cx, cy, ck, cg, i, j, k);
                if(vis[cx] || vis[cy] || vis[ck] || vis[cg]) continue;
                link(r, cx);
                link(r, cy);
                link(r, ck);
                link(r, cg);
            }
}
void removes(int c)
{
    L[R[c]] = L[c];
    R[L[c]] = R[c];
    for(int i = D[c]; i != c; i = D[i])
        for(int j = R[i]; j != i; j = R[j])
        {
            U[D[j]] = U[j];
            D[U[j]] = D[j];
            S[C[j]]--;
        }
}
void resumes(int c)
{
    for(int i = U[c]; i != c; i = U[i])
        for(int j = L[i]; j != i; j = L[j])
        {
            U[D[j]] = j;
            D[U[j]] = j;
            S[C[j]]++;
        }
    L[R[c]] = c;
    R[L[c]] = c;
}
bool dfs(int k)
{
    if(R[head] == head)
    {
        for(int i = 0; i < k; i++)
            ans[X[O[i]] / N] = X[O[i]] % N + 'A';
        for(int i = 0; i < N * N; i++)
        {
            printf("%c", ans[i]);
            if((i + 1) % N == 0) printf("\n");
        }
        printf("\n");
        return true;
    }
    int s = INF, c;
    for(int i = R[head]; i != head; i = R[i])
        if(s > S[i])
        {
            s = S[i];
            c = i;
        }
    removes(c);
    for(int i = U[c]; i != c; i = U[i])
    {
        O[k] = i;
        for(int j = R[i]; j != i; j = R[j])
            removes(C[j]);
        if(dfs(k + 1)) return true;
        for(int j = L[i]; j != i; j = L[j])
            resumes(C[j]);
    }
    resumes(c);
    return false;
}
int main()
{
    while(scanf("%s", mp[0]) != EOF)
    {
        init();
        readdata();
        dfs(0);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值