题意:给出一张图,n<=1000,m<=10000. 有一辆车想从图的一个地方到达另外一个地方,每个点是一个卖油的地方,每个地方买的有价格不一样,车的最大装油量是c,求初始点到终止点的最小花费。
网上大部分的思路都是类似于dij的那种扩展。
首先定义一个二维数组dp。 dp[i][j] 表示走到i点剩余j个单位的汽油时的最小花费
然后维护一个优先队列。 每次有两种可扩展的状态,一是加一个单位的油,二是走向邻接点,然后不断的将状态加入优先队列中
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#define MAXN 1005
#define MAXM 100005
#define INF 1000000000
using namespace std;
struct Edge
{
int v, w, next;
}edge[MAXM];
struct Node
{
int v, cost, f;
bool operator <(const Node &a) const{
return a.cost < cost;
}
};
int head[MAXN], e, n, m, cap;
int dp[MAXN][105], used[MAXN][105], p[MAXN];
int s, t, ask;
priority_queue<Node>q;
void init()
{
memset(head, -1, sizeof(head));
e = 0;
}
void ready()
{
for(int i = 0; i < n; i++)
for(int j = 0; j <= 100; j++)
dp[i][j] = INF;
dp[s][0] = 0;
memset(used, 0, sizeof(used));
while(!q.empty()) q.pop();
}
void insert(int x, int y, int w)
{
edge[e].v = y;
edge[e].w = w;
edge[e].next = head[x];
head[x] = e++;
}
int bfs()
{
Node a, b;
a.v = s, a.cost = 0, a.f = 0;
q.push(a);
while(!q.empty())
{
a = q.top();
q.pop();
int u = a.v;
int cost = a.cost;
int f = a.f;
used[u][f] = 1;
if(u == t) return cost;
if(f + 1 <= cap && !used[u][f + 1] && dp[u][f + 1] > dp[u][f] + p[u])
{
dp[u][f + 1] = dp[u][f] + p[u];
b.v = u;
b.f = f + 1;
b.cost = dp[u][f + 1];
q.push(b);
}
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].v;
int w = edge[i].w;
if(f >= w && !used[v][f - w] && dp[v][f - w] > cost)
{
dp[v][f - w] = cost;
b.v = v;
b.f = f - w;
b.cost = dp[v][f - w];
q.push(b);
}
}
}
return -1;
}
int main()
{
int x, y, w;
scanf("%d%d", &n, &m);
init();
for(int i = 0; i < n; i++) scanf("%d", &p[i]);
while(m--)
{
scanf("%d%d%d", &x, &y, &w);
insert(x, y, w);
insert(y, x, w);
}
scanf("%d", &ask);
while(ask--)
{
scanf("%d%d%d", &cap, &s, &t);
ready();
int ans = bfs();
if(ans != -1) printf("%d\n", ans);
else printf("impossible\n");
}
return 0;
}