后缀数组 不重叠最长重复子串 POJ 1743

题意:有N个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题。“主题”是整个音符序列的一个子串,它需要满足如下条件:

1.长度至少为5个音符。

2.在乐曲中重复出现。(可能经过转调,“转调”的意思是主题序列中每个音符都被加上或减去了同一个整数值)

3.重复出现的同一主题不能有公共部分。

首先看到转调,这很重要,一个序列中的数加上同一个数变成另一个序列,这两个序列就是同一个主题,也就是两数列分别对相邻的数做差,应该是一一对应相等的。

转化完之后就发现是一个不重叠最长重复子串问题了,况且给的数都这么小,明摆着让你基数排序用的。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdlib>
#define MAXN 22222
using namespace std;
int r[MAXN];
int wa[MAXN], wb[MAXN], wv[MAXN], tmp[MAXN];
int sa[MAXN]; //index range 1~n value range 0~n-1
int cmp(int *r, int a, int b, int l)
{
    return r[a] == r[b] && r[a + l] == r[b + l];
}
void da(int *r, int *sa, int n, int m)
{
    int i, j, p, *x = wa, *y = wb, *ws = tmp;
    for (i = 0; i < m; i++) ws[i] = 0;
    for (i = 0; i < n; i++) ws[x[i] = r[i]]++;
    for (i = 1; i < m; i++) ws[i] += ws[i - 1];
    for (i = n - 1; i >= 0; i--) sa[--ws[x[i]]] = i;
    for (j = 1, p = 1; p < n; j *= 2, m = p)
    {
        for (p = 0, i = n - j; i < n; i++) y[p++] = i;
        for (i = 0; i < n; i++)
            if (sa[i] >= j) y[p++] = sa[i] - j;
        for (i = 0; i < n; i++) wv[i] = x[y[i]];
        for (i = 0; i < m; i++) ws[i] = 0;
        for (i = 0; i < n; i++) ws[wv[i]]++;
        for (i = 1; i < m; i++) ws[i] += ws[i - 1];
        for (i = n - 1; i >= 0; i--) sa[--ws[wv[i]]] = y[i];
        for (swap(x, y), p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
            x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
    }
}
int rank[MAXN]; //index range 0~n-1 value range 1~n
int height[MAXN]; //index from 1   (height[1] = 0)
void calheight(int *r, int *sa, int n)
{
    int i, j, k = 0;
    for (i = 1; i <= n; ++i) rank[sa[i]] = i;
    for (i = 0; i < n; height[rank[i++]] = k)
        for (k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; ++k);
    return;
}
int a[MAXN];
bool check(int mid, int n)
{
    int flag = 0;
    int mx = -1, mi = n;
    for(int i = 2; i <= n + 1; i++)
    {
        if((i == n + 1 && flag) || (height[i] < mid && flag))
        {
            flag = 0;
            mx = max(mx, sa[i - 1]);
            mi = min(mi, sa[i - 1]);
            if(mx - mi > mid) return true;
            mi = n, mx = -1;
        }
        else if(height[i] >= mid)
        {
            flag = 1;
            mx = max(mx, sa[i - 1]);
            mi = min(mi, sa[i - 1]);
        }
    }
    return false;
}
int main()
{
    int n;
    while(scanf("%d", &n) != EOF && n)
    {
        for(int i = 0; i < n; i++) scanf("%d", &a[i]);
        for(int i = 0; i < n - 1; i++) r[i] = a[i + 1] - a[i] + 89;
        r[--n] = 0;
        da(r, sa, n + 1, 200);
        calheight(r, sa, n);
        int low = 4, high = n / 2, ans = 0;
        while(low <= high)
        {
            int mid = (low + high) >> 1;
            if(check(mid, n))
            {
                low = mid + 1;
                ans = max(ans, mid);
            }
            else high = mid - 1;
        }
        if(ans < 4) printf("0\n");
        else printf("%d\n", ans + 1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值