重学数据结构007——二叉查找树

之前的博客中提到过,我学习采用的参考书是《数据结构与算法分析——C语言描述》。这门书的组织安排与国内广泛实用的教材《数据结构——C语言版》比较不同。这本书描述了一些树和二叉树的概念,举例讲解了什么是树的三种遍历之后,就开始重点讲解二叉查找树、平衡二叉树、AVL树、伸展树、B数了。这一篇博客,重点学习二叉查找树的概念和基本操作。

大家都知道,树的定义本身就带有递归性。因此,树的很多操作都涉及到了递归。

二叉查找树的定义如下:

1.二叉查找树首先是一棵二叉树;

2.二叉查找树除了是二叉树外,还具有以下性质:对于树中的任何一个节点X,其左子树中的所有节点的关键字均小于X的关键字的值;而其右子树中的所有关键字的值均大于X的关键字的值。下面两棵二叉树中,左边的二叉树是二叉查找树而右边的不是。

二叉查找树的数据结构定义如下:

 

typedef int ElementType;
typedef struct TreeNode *Position;
typedef Position BiSearchTree;
struct TreeNode
{
	ElementType Element;
	BiSearchTree Left,Right;
};

二叉查找树的常用操作如下:

 

BiSearchTree MakeEmpty(BiSearchTree Tree);
Position Find(ElementType X, BiSearchTree T);
Position FindMin(BiSearchTree T);
Position FindMax(BiSearchTree T);
BiSearchTree Insert(ElementType X,BiSearchTree T);
BiSearchTree Delete(ElementType X, BiSearchTree T);

二叉排序树的操作与之前学习的一些数据结构的操作相比,可能难理解一些。下面我们挑比较难的几个一一讲解。

1.二叉查找树中查找指定的元素Find

二叉排序树的性质是二叉排序树很多操作的基本依据。既然要查找指定元素X,先比较X与根节点元素的关系,如果刚好相等,直接返回啦;如果X小于根节点的元素值,那么去根节点的左子树中查找,也就是调用Find方法,只是传递的参数是X和根节点的左子树;如果X大于根节点的元素值,那么去根节点的右子树中查找,也就是调用Find函数,只是传递的参数是X和根节点的右子树。

2.查找最小元素FindMin和最大元素FindMax

这两个操作是类似的。采用迭代或者递归都可以实现,查找最小元素只需要沿着左子树访问下去,查找最大元素则相反。下面我们会分别采用递归和迭代实现这两个操作。

3.插入操作Insert

插入操作其实类似于查找操作,插入过过程其实就是先得找到一个合适的位置。插入其实有下面几个情况:

(1)如果函数传进来的是空树,那么创建一棵树,将其元素值设置为X。这种情况显而易见;

(2)如果不是空树,那就比较根节点元素值和X的大小,如果X的值小于根节点的元素值,而此时的根节点的左子树为空,那么根节点的左孩子就是X元素的归宿啦;同样的道理,如果X的值大于根节点的元素值,而此时根节点的右子树为空,那么根节点的右孩子就是X元素的归宿啦。把握住这一点其实基本上就能把握住这个操作了。文字描述可能比较抽象,下面看图:

左边的图,如果要插入5,沿着树一直找到节点4,这时5>4并且4的右孩子为空,那么5就是4的右孩子。右边的图,要想插入8,沿着树找到9,发现8<9且9的左孩子为空,那么8就是9的左孩子。

当然,在实现这样一个过程的时候可以使用递归。

4.删除操作Delete

删除操作是我认为最复杂最不好理解的一个操作。如果没有仔细想明白整个过程,上来就看代码的话可能会很晕。删除操作分两步:第一步是查找,找的过程就涉及元素值之间的比较。我们重点说找到之后的操作。假设我们找到了这个节点,现在要删除,涉及三种情况:

(1)该节点是叶子。这还有什么好说的,直接删了一了百了;

(2)该节点只有一个孩子节点。也不复杂,让该节点的父节点直接指向其子节点就行了。当然,也别忘了回收该节点;

(3)该节点有两个孩子:找到该节点右子树中最小的节点,将其元素值赋给该节点,然后删除那个最小节点。这种情况看图:

说了半天了,下面看看完整的代码:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TreeNode *Position;
typedef Position BiSearchTree;
struct TreeNode
{
	ElementType Element;
	BiSearchTree Left,Right;
};

//建立一颗空树
BiSearchTree MakeEmpty(BiSearchTree Tree)
{
	if(!Tree)
	{
		MakeEmpty(Tree->Left);
		MakeEmpty(Tree->Right);
		free(Tree);
	}
	return NULL;
}
//二叉查找树的Find操作
Position Find(ElementType X, BiSearchTree T)
{
	if(T == NULL)
	{
		return NULL;
	}
	else
	{
		//关键字小于根节点的元素值
		if(X < T->Element)
		{
			return Find(X,T->Left);
		}
		else if(X > T->Element)
		{
			return Find(X,T->Right);
		}
		else
		{
			return T;
		}
	}
}
//查找最小值:递归写法
Position FindMin(BiSearchTree T)
{
	if(T == NULL)
	{
		return NULL;
	}
	else
	{
		if(T->Left == NULL) 
		{
			return T;
		}else
		{
			return FindMin(T->Left);
		}
	}
}

//查找最大值:非递归写法
Position FindMax(BiSearchTree T)
{
	if(T->Right != NULL)
	{
		while(T->Right != NULL)
		{
			T = T->Right;
		}
	}
	return T;
}
//插入元素X
BiSearchTree Insert(ElementType X,BiSearchTree T)
{
	//当树为空树时
	if(T == NULL)
	{
		T = malloc(sizeof(struct TreeNode));
		if(T == NULL)
		{
			fprintf(stderr,"Out of Space!!!");
		}
		else
		{
			T->Element = X;
			T->Left = NULL;
			T->Right = NULL;
		}
	}
	//树不为空时
	else
	{
		if(X < T->Element) 
		{
			T->Left = Insert(X,T->Left);
		}
		else if(X > T->Element) 
		{
			T->Right = Insert(X,T->Right);
		}
		else
		{
			//do nothing!
		}
	}
	return T;
}

//删除节点X
BiSearchTree Delete(ElementType X, BiSearchTree T)
{
	Position TmpCell;
	if(T==NULL)
	{
		fprintf(stderr,"Element does not exist!");
	}
	else if(X < T->Element)
	{
		T->Left = Delete(X,T->Left);
	}
	else if(X > T->Element)
	{
		T->Right = Delete(X,T->Right);
	}
	else if(T->Left && T->Right)
	{
		TmpCell = FindMin(T->Right);
		T->Element = TmpCell->Element;
		T->Right = Delete(T->Element,T->Right);
	}
	else
	{
		TmpCell = T;
		if(T->Left == NULL)
		{
			T = T->Right;
		}
		else if(T->Right == NULL)
		{
			T = T->Left;
		}
		free(TmpCell);
	}
	return T;
}

int main(void)
{
	BiSearchTree T;
	int index;
	int arr[10] = {10,9,8,7,6,1,2,3,4,5};
	T = NULL;
	for(index=0; index < 10; index++)
	{
		T = Insert(arr[index],T);
	}
	T = Insert(18,T);
	T = Insert(15,T);
	printf("The minimum element is %d\n",FindMin(T)->Element);
	printf("The maxmium element is %d\n",FindMax(T)->Element);
	return 0;
}

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值