TestComplete8.5发布,率先支持Flex4.5、Silverlight4、IE9、FF4

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,您想了解如何使用Python实现ID3和C4.5算法进行分类吗?如果是的话,以下是一些简单的步骤: 1. 收集数据集并将其存储在一个文件中。 2. 读取数据集并将其分为训练集和测试集。 3. 实现决策树算法。这可以通过编写一个递归函数来完成,该函数在每个节点处选择最佳特征,并将数据集分为子集。 4. 实现分类器函数。该函数应该接受测试集中的一个样本作为输入,并返回预测的类别。 5. 计算模型的准确性。在预测测试集的类别时,可以使用混淆矩阵来计算模型的准确性。 下面是一个使用Python实现C4.5算法的示例代码: ```python import pandas as pd import numpy as np import math def load_data(file_path): data=pd.read_csv(file_path) data.columns=['age','income','student','credit','buy_computer'] return data def choose_best_feature(data): num_features=data.shape[1]-1 base_entropy=calc_entropy(data) best_info_gain=0.0 best_feature=-1 for i in range(num_features): feat_list=data.iloc[:,i].tolist() unique_vals=set(feat_list) new_entropy=0.0 for value in unique_vals: sub_data=split_data(data,i,value) prob=len(sub_data)/float(len(data)) new_entropy+=prob*calc_entropy(sub_data) info_gain=base_entropy-new_entropy if(info_gain>best_info_gain): best_info_gain=info_gain best_feature=i return best_feature def calc_entropy(data): num_entries=len(data) label_counts={} for i in range(num_entries): current_label=data.iloc[i,-1] if current_label not in label_counts.keys(): label_counts[current_label]=0 label_counts[current_label]+=1 entropy=0.0 for key in label_counts: prob=float(label_counts[key])/num_entries entropy-=prob*math.log(prob,2) return entropy def split_data(data,axis,value): new_data=[] for feature in data.values: if feature[axis]==value: reduced_feature=feature[:axis] reduced_feature.extend(feature[axis+1:]) new_data.append(reduced_feature) return pd.DataFrame(new_data,columns=data.columns[:-1]) def majority_count(class_list): class_count={} for vote in class_list: if vote not in class_count.keys(): class_count[vote]=0 class_count[vote]+=1 sorted_class_count=sorted(class_count.items(),key=lambda x:x[1],reverse=True) return sorted_class_count[0][0] def create_tree(data,labels): class_list=data.iloc[:,-1].tolist() if class_list.count(class_list[0])==len(class_list): return class_list[0] if len(data.columns)==1: return majority_count(class_list) best_feat=choose_best_feature(data) best_feat_label=labels[best_feat] my_tree={best_feat_label:{}} del(labels[best_feat]) feat_values=data.iloc[:,best_feat].tolist() unique_vals=set(feat_values) for value in unique_vals: sub_labels=labels[:] my_tree[best_feat_label][value]=create_tree(split_data(data,best_feat,value),sub_labels) return my_tree def classify(tree,feat_labels,test_vec): first_str=list(tree.keys())[0] second_dict=tree[first_str] feat_index=feat_labels.index(first_str) class_label=None for key in second_dict.keys(): if test_vec[feat_index]==key: if type(second_dict[key]).__name__=='dict': class_label=classify(second_dict[key],feat_labels,test_vec) else: class_label=second_dict[key] return class_label if __name__=='__main__': data=load_data('data.csv') labels=data.columns[:-1].tolist() tree=create_tree(data,labels) test_vec=['middle','high','yes','fair'] result=classify(tree,labels,test_vec) print(result) ``` 希望这可以帮助您了解如何使用Python实现C4.5算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值