欧拉函数

对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。此函数以其首名研究者欧拉命名(Euler’s totient function),它又称为Euler’s totient function、φ函数、欧拉商数等。

ϕ ( x ) = x ( 1 − 1 p 1 ) ⋯ ( 1 − 1 p k ) \phi(x) = x (1-\frac{1}{p_1}) \cdots (1-\frac{1}{p_k}) ϕ(x)=x(1p11)(1pk1)

其中 p 1 , p 2 , … , p k p_1, p_2,\ldots, p_k p1,p2,,pk x x x 的所有质因数, x x x 是不为0的整数。

  • 定义 φ(1)=1(和1互质的数(小于等于1)就是1本身)。

比如 12 = 2 × 2 × 3 12 = 2\times 2 \times 3 12=2×2×3那么
ϕ ( 12 ) = ϕ ( 4 × 3 ) = φ ( 2 2 ∗ 3 1 ) = ( 2 2 − 2 1 ) ∗ ( 3 1 − 3 0 ) = 4 \phi(12)=\phi(4 \times 3)=φ(2^2*3^1)=(2^2-2^1)*(3^1-3^0)=4 ϕ(12)=ϕ(4×3)=φ2231=22213130=4

设n为正整数,以 φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值 φ:N→N,n→φ(n)称为欧拉函数。

特殊性质:

  • 欧拉函数是积性函数——若m,n互质,则 ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn) = \phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n)
  • 当n为奇质数时,则 ϕ ( 2 n ) = ϕ ( n ) \phi(2n) = \phi(n) ϕ(2n)=ϕ(n),证明与上述类似。
  • 若n为质数,则 ϕ ( n ) = n − 1 \phi(n) = n-1 ϕ(n)=n1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值