假设检验

假设检验

假设检验是推论统计中用于检验统计假设的一种方法

  • 主要目的: 是在有关总体参数的两个相互对立的假设中,通过抽样检验来进行抉择
  • 基本思想:小概率事件在一次试验中基本不会发生
  • 基本思路:
    1. 对总体参数设定一个假设
    2. 利用由样本获得的样本统计量,以检验总体参数是否符合假设
    3. 对此假设做出决策,接收或拒绝此假设

错误分类

第一类错误:拒绝正确的零假设

α = P ( R e j e c t   H 0 ∣ H 0   i s   T r u e ) \alpha = P(Reject ~ H_0 | H_0 ~ is ~True) α=P(Reject H0H0 is True)

α \alpha α 称为显著性水平。

拒绝正确的零假设意味着接受了错误的备选假设 H A H_A HA,所以第一类错误又称为“假阳性”。

有的人在这里可能产生疑惑,为什么不是“接受了错误的零假设” 即第二类错误叫假阳性呢?

这是因为习惯上,零假设(Null Hypothesis)就是保持原样、不提出新观点

比如你去医院,医生的零假设就是你没病;AB 测试里,零假设就是产品当前的改动不会带来任何效果提升。对应的备选假设:你有病;产品改动的有效的。

这样来理解“假阳性”是不是就简单了,你本来没病,医生说你有病(阳性),所以医生把你诊断为 “阳性” 结果是假的。

第二类错误:接受错误的零假设

β = P ( A c c e p t   H 0 ∣ H 0   i s   F a l s e ) \beta = P(Accept ~ H_0 | H_0 ~ is ~False) β=P(Accept H0H0 is False)

容易理解,第二类错误又称“假阴性”。

基本步骤

  1. 确定零假设和备选假设,单尾检验还是双尾检验
  2. 确定显著性水平
  3. 建立拒绝域并判断
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页