peghoty

学习是一种态度!

Factorization Machines 学习笔记(四)学习算法

最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS...

2014-10-28 10:22:34

阅读数:29807

评论数:9

Factorization Machines 学习笔记(二)模型方程

最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS...

2014-10-28 10:22:16

阅读数:14253

评论数:3

Factorization Machines 学习笔记(三)回归和分类

最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS...

2014-10-28 10:22:16

阅读数:10374

评论数:1

Factorization Machines 学习笔记(一)预测任务

最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD) 法和交替最小二乘法(A...

2014-10-28 10:21:55

阅读数:23845

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭