#bzoj1378#没有上司的晚会(树形DP基础)

【基础算法】没有上司的晚会
时间限制: 1 Sec 内存限制: 64 MB
题目描述
Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起参加宴会。
输入
第一行一个整数N。(1≤N≤6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128≤Ri≤127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0,0。
输出
第1行:输出最大的快乐指数。
样例输入
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
样例输出
5
学的第一道树形DP题目,上课当做例题讲的,思路很经典。
dp[i][0]表示以i为根的子树中,i不受邀请,能获得的最大快乐指数
dp[i][1]表示以i为根的子树中,i受邀请,能获得的最大快乐指数
当i不受邀请时,i的直接下级节点可以任意选择(即可以来也可以不来)
当i受邀请时,i的直接下级节点必须缺席(即需要从dp[ch][0]转移过来)
状态转移如下:
dp[i][0]=sum(max(dp[ch][0],dp[ch][1]));
dp[i][1]=sum(dp[ch][0])其中ch是i的直接下级
初始时将dp[i][1]赋值为他自己的快乐指数
记忆化搜索

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<vector>
using namespace std;
const int Max=6000;
int N,Root;
int dp[Max+5][2];
bool vis[Max+5];
vector<int>ch[Max+5];
int max(int a,int b){return a<b?b:a;}
void search(int r){
    if(vis[r])  return ;
    vis[r]=1;
    for(vector<int>::iterator it=ch[r].begin(); it!=ch[r].end(); ++it){
        if(!vis[*it])   search(*it);
        dp[r][0]+=max(dp[*it][1],dp[*it][0]);
        dp[r][1]+=dp[*it][0];
    }
    Root=r;
    return ;
}
void getint(int &num){
    char c;int fla=1;num=0;
    while((c=getchar())<'0'||c>'9')if(c=='-')fla=-1;
    while(c>='0'&&c<='9'){num=num*10+c-48;c=getchar();}
    num*=fla;
}
int main(){
    getint(N);
    for(int i=1; i<=N; ++i)getint(dp[i][1]);
    int L,K;
    for(int i=1; i<N; ++i){
        getint(L),getint(K);
        ch[K].push_back(L);
    }
    getint(K),getint(L);
    for(int i=1; i<=N; ++i)if(ch[i].size()==0)
            vis[i]=1;
    for(int i=1; i<=N; ++i)if(!vis[i])
        search(i);
    printf("%d\n",max(dp[Root][0],dp[Root][1]));
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页