1 maven依赖包如下
<dependency>
    <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.11</artifactId>
        <version>1.5.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-mllib_2.11</artifactId>
        <version>1.5.1</version>
</dependency>2 计算数据的格式
a b c 
a b 
a b c d 
a c d
3 关联规则代码如下
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark.mllib.fpm.FPGrowth
object fpg {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("关联规则").setMaster("local[2]")
    val sc = new SparkContext(conf)
    Logger.getRootLogger.setLevel(Level.WARN)
    val data = sc.textFile("f:/data/item.txt", 10)
    val example = data.map(_.split(" ")).cache()
    val minSupport = 0.5
    val numPartitions = 10
    val model = new FPGrowth().setMinSupport(minSupport).setNumPartitions(numPartitions).run(example)
    println("出现频次----------------")
    model.freqItemsets.collect().foreach { x =>
      println(x.items.mkString("[", ",", "],") + x.items.length)
    }
    println("置信度---------------")
    model.generateAssociationRules(minSupport).collect().foreach { x =>
      println(x.antecedent.mkString("[", ",", "]") + " => " + x.consequent.mkString("[", ",", "]") + ", " + x.confidence)
    }
  }
} 
                   
                   
                   
                   
                             本文介绍如何使用Apache Spark的MLlib库中的FPGrowth算法进行关联规则分析。通过设置最小支持度和分区数量,从数据集中挖掘频繁项集,并生成相应的关联规则。
本文介绍如何使用Apache Spark的MLlib库中的FPGrowth算法进行关联规则分析。通过设置最小支持度和分区数量,从数据集中挖掘频繁项集,并生成相应的关联规则。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   990
					990
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            