非参数检验-Wilcoxon,Wilcoxon-Mann-Whitney符号秩检验以及Pearson,Spearman秩,Kendall τ相关检验(附带实例-R实现)

本文介绍了几种非参数统计检验方法,包括符号检验、Wilcoxon符号秩检验、Wilcoxon-Mann-Whitney秩和检验、Kruskal-Wallis检验及Pearson、Spearman和Kendall的相关性检验,并通过实际案例展示了这些方法的应用。

1 单一样本检验

1.1 符号检验

   符号检验是非参数统计中最古老的检验方法之一,这种检验被称为符号检验的一个理由是它所关心的信息只与两类观测值有关,如果用符号“+”和“-”区分,符号检验就是通过符号“+”和“-”的个数进行统计推断。符号检验的推断过程(以双边检验为例):

1.2 Wilcoxon符号秩检验

从1.1符号检验的定义和推断过程可以看出,它只利用了样本差异方向上的信息,并没有考虑差别的大小,即就是在符号检验中,每个样本点的正负号只是代表了该点在中心位置的那一边,但没有表明该点距离中心位置的远近。因此,就有了Wilcoxon符号秩检验,它弥补了符号检验的不足也充分得应用了样本信息。使用Wilcoxon符号秩检验的前提是假设总体分布具有对称性。

2 两独立样本检验

Wilcoxon-Mann-Whitney秩和检验

假定两总体分布有类似形状,不假定对称,样本

3.多组数据位置推断

Kruskal-Wallis检验

Kruskal- Wallis检验是一个将两样本W-M-W检验推广到三组或更多检验的方法,如果数据取自完全随机设计,先把多个样本汇合起来求秩,再按样本组求秩和,考虑到各个处理的观测值可能不同,可以比较各个处理之间的平均秩差,从而达到比较的目的。

对检验问题,完全随机设计的的数据如下表所示

 

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值