0.前言
- 排序的概念:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
- 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
- 内部排序:数据元素全部放在内存中的排序。
- 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。
常见的排序算法:


1.直接插入排序
- 时间复杂度
最坏:逆序:1+2+3+4+…+N 等差数列:O(N^2).
最好:顺序有序:O(N) 只比较不插入数据
综上,插入排序的时间复杂度为O(N^2)。 - 空间复杂度
插入排序的空间复杂度:O(1) - 稳定性
插入排序算法是一种稳定的算法
2.冒泡排序
- 时间复杂度
最坏:逆序:1+2+3+4+…+N 等差数列:O(N^2)
最好:顺序有序:O(1)
综上,冒泡排序的时间复杂度为O(N)。 - 空间复杂度
冒泡排序的空间复杂度为O(1)。 - 稳定性
冒泡排序算法是一种稳定的算法
3.希尔排序
- 时间复杂度
希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些书中给出的希尔排序的时间复杂度都不固定:

因为咋们的gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,我们就按照:

2. 空间复杂度
希尔排序的空间复杂度为O(1)
3. 稳定性
希尔排序算法是一种不稳定的算法
4.直接选择排序
- 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:不稳定
5. 堆排序
- 时间复杂度
堆排序包括两个阶段,初始化建堆和重建堆。所以堆排序的时间复杂度由这两方面组成,下面分别进行分析。
初始化建堆:

重新建堆:
和建堆的思路差不多,交换节点为O(1)交换n次,所以遍历消耗时间O(n),最坏情况下,对n-1个节点建堆的过程中,耗时为O(logn),所以时间复杂度为n*log(n)
综上,总的时间复杂度为O(n) + O(nlogn),考虑n>=2时,logn比1大,所以最终取时间复杂度为O(nlogn) - 空间复杂度
堆排序的空间复杂度为O(1). - 稳定性
堆排序是一种不稳定的算法。
6.快速排序
-
快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
-
时间复杂度:O(N*logN)

-
空间复杂度:O(logN)
-
稳定性:不稳定
7.归并排序
- 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
- 时间复杂度:O(N*logN)
- 空间复杂度:O(N)
- 稳定性:稳定
8.测试各个排序算法
void TestOP()
{
srand(time(0));
const int N = 100000;
int* a1 = (int*)malloc(sizeof(int) * N);
int* a2 = (int*)malloc(sizeof(int) * N);
int* a3 = (int*)malloc(sizeof(int) * N);
int* a4 = (int*)malloc(sizeof(int) * N);
int* a5 = (int*)malloc(sizeof(int) * N);
int* a6 = (int*)malloc(sizeof(int) * N);
int* a7 = (int*)malloc(sizeof(int) * N);
for (int i = 0; i < N; ++i)
{
a1[i] = rand();
a2[i] = a1[i];
a3[i] = a1[i];
a4[i] = a1[i];
a5[i] = a1[i];
a6[i] = a1[i];
a7[i] = a1[i];
}
int begin1 = clock();
InsertSort(a1, N);
int end1 = clock();
int begin2 = clock();
ShellSort(a2, N);
int end2 = clock();
int begin3 = clock();
BubbleSort(a3, N);
int end3 = clock();
int begin4 = clock();
SelectSort(a4, N);
int end4 = clock();
int begin5 = clock();
HeapSort(a5, N);
int end5 = clock();
int begin6 = clock();
QuickSort1(a6, 0, N - 1);
int end6 = clock();
int begin7 = clock();
MergeSort(a7, N);
int end7 = clock();
printf("InsertSort:%d\n", end1 - begin1);
printf("ShellSort:%d\n", end2 - begin2);
printf("BublleSort:%d\n", end3 - begin3);
printf("SelectSort:%d\n", end4 - begin4);
printf("HeapSort:%d\n", end5 - begin5);
printf("QuickSort1:%d\n", end6 - begin6);
printf("MergeSort:%d\n", end7 - begin7);
free(a1);
free(a2);
free(a3);
free(a4);
free(a5);
free(a6);
free(a7);
}
int main()
{
TestOP();
return 0;
}

本文详细介绍了直接插入排序、冒泡排序、希尔排序、直接选择排序、堆排序、快速排序、归并排序这七种常见内部排序算法的时间复杂度、空间复杂度和稳定性,并通过测试代码展示了它们在相同数据集上的运行时间。总结了各种排序算法在不同场景下的适用性和效率。
438

被折叠的 条评论
为什么被折叠?



