Precision, Recall, Accuracy Precision, Mean Accuracy Precision

假设100个样本,80个正例,20个负例,找出所有正样本,找出50个正例,50个正例中10个负例。

Precision:相对于正例样本,预测结果来说,则结果为40/50

Recall: 相对于正例样本来说,则结果为40/80

Accuracy 为所有预测对的结果,(40+10)/100


AP=每一类样本精确率所有和的平均

假设苹果类在第一次预测中有精确率3/5,第二次预测有2/5,第三4/5

AP=(3/5+2/5+4/5)/3;


mAP=所有类平均之和/类数  (表达的是模型的分类能力)


预测结果用IOU来算(如果和Ground truth IOU大于一个值就是正例)

在多目标检测中,P=(每一张图像中每一类各自预测的个数)/这类的总个数

AP=(一批图像中P)/这批图像

map=所有类平均之和

参考:https://blog.csdn.net/katherine_hsr/article/details/79266880

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭