使用桥梁振动自动识别车辆附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着现代交通网络的日益复杂化和车辆保有量的持续增长,对桥梁的健康监测和车辆流量的有效管理变得尤为重要。传统的车辆识别方法,如地感线圈、摄像头或压力传感器,虽然在某些场景下表现良好,但也存在一些固有的局限性,例如易受恶劣天气影响、维护成本较高、对桥梁结构本身无感知等。近年来,基于桥梁振动信号进行车辆自动识别的研究逐渐兴起,凭借其非接触性、隐蔽性、对桥梁结构状态的潜在感知能力以及可部署于现有桥梁结构的优势,展现出巨大的应用潜力。本文旨在深入探讨基于桥梁振动自动识别车辆的原理、方法、挑战与未来发展方向。

原理与机制

基于桥梁振动识别车辆的核心原理在于,不同类型和重量的车辆通过桥梁时,会对桥梁结构产生独特的动态荷载,从而激发出不同的振动响应。这些振动响应包含了丰富的车辆特征信息,如同车辆的“指纹”。具体而言,当车辆驶上桥梁时,其动荷载会引起桥梁的弯曲、剪切、扭转等复杂振动模式。车辆的质量、轴载分布、车速、悬架特性以及车辆与桥梁的相互作用(vehicle-bridge interaction, VBI)都会对桥梁的振动信号产生影响。例如,重型货车通常会激发出更大振幅和更低频率的振动,而小型轿车则可能产生更高频率且振幅较小的振动。通过在桥梁结构的关键位置布置高精度加速度传感器或位移传感器,可以捕捉到这些振动信号,并通过先进的信号处理和机器学习技术从中提取车辆特征并实现识别。

方法与技术

基于桥梁振动自动识别车辆通常涉及以下关键技术环节:

  1. 数据采集:这是整个系统的基础,要求传感器具有高灵敏度、宽频响和良好的信噪比,能够精确捕捉桥梁在车辆荷载作用下的微弱振动。加速度传感器因其安装方便、成本相对较低而被广泛应用。传感器通常布置在桥梁跨中、支座附近或根据模态分析结果确定的敏感位置。采样频率需要足够高,以捕捉车辆通过过程中的动态细节。

  2. 数据预处理:原始振动信号通常包含环境噪声、传感器自身的噪声以及与车辆无关的振动分量。数据预处理旨在去除或抑制这些噪声,提高信号的质量。常用的预处理方法包括滤波(如带通滤波去除低频环境振动和高频噪声)、去趋势、数据标准化等。

  3. 特征提取:这是将原始振动信号转化为可供机器学习模型识别的特征向量的关键步骤。有效的特征能够最大限度地保留车辆的辨识信息,同时降低数据的维度。常用的特征提取方法包括:

    • 时域特征:如均方根(RMS)值、峰值、方差、偏度、峭度等,反映振动信号的能量和分布特性。

    • 频域特征:通过傅里叶变换或小波变换等方法将信号转换到频域,提取主频、带宽、功率谱密度等特征。不同车辆激发的桥梁振动频率可能存在差异。

    • 时频域特征:结合时域和频域信息,如小波包能量谱、Hilbert-Huang变换等,能够更好地刻画非平稳的车辆荷载响应。

    • 模态参数:提取桥梁的模态频率、阻尼比、振型等参数,这些参数会因车辆的附加质量和刚度影响而发生变化,可以间接反映车辆信息。

    • 数据驱动特征:利用深度学习等方法直接从原始振动信号中学习抽象特征。

  4. 模型训练与识别:提取到的特征向量被用于训练机器学习或深度学习模型,以实现车辆类型的分类或回归。常用的模型包括:

    • 支持向量机(SVM):适用于高维小样本数据的分类。

    • 神经网络(NN):特别是深度神经网络(DNN),在处理复杂非线性关系和挖掘深层特征方面具有优势。

    • 决策树/随机森林:易于理解和解释,适用于多特征分类。

    • 基于模板匹配的方法:建立不同车辆类型的振动响应模板,通过计算待识别信号与模板的相似度进行识别。

    • 深度学习模型:如卷积神经网络(CNN)用于处理时频图像,循环神经网络(RNN)或长短期记忆网络(LSTM)用于处理时间序列数据,可以直接从原始或预处理后的振动信号中学习特征并进行分类。

  5. 车辆信息反演(可选):在识别车辆类型的基础上,一些研究还尝试通过振动信号反演车辆的其他信息,如车速、轴载、甚至轴距。这通常需要更复杂的模型和对VBI机理更深入的理解。

优势与挑战

基于桥梁振动自动识别车辆具有以下显著优势:

  • 非接触性:无需在路面上安装设备,不影响交通流,易于部署和维护。

  • 隐蔽性:传感器可隐藏安装在桥梁结构内部,不易被破坏。

  • 对桥梁结构状态的潜在感知:车辆振动与桥梁结构的健康状况密切相关,识别车辆的同时,其振动信号也为桥梁健康监测提供了宝贵数据。

  • 成本效益:相较于大规模部署摄像机或地感线圈网络,振动传感器的成本相对较低。

然而,该技术也面临一些挑战:

  • 环境因素影响:风荷载、温度变化、地震等环境因素都会对桥梁产生振动,与车辆激发的振动混叠,增加了识别难度。

  • 交通流复杂性:多辆车同时在桥上行驶、车辆跟驰、横向位置变化等都会使桥梁振动信号变得复杂,难以分离单个车辆的贡献。

  • 车辆变异性:同类型车辆的质量、载荷、悬架状况等都可能存在差异,导致振动响应不完全相同。

  • 数据标注难度:获取大量带有准确车辆类型和信息的桥梁振动数据用于模型训练是一个耗时耗力的过程。

  • 模型泛化能力:在不同桥梁、不同路况、不同天气条件下训练的模型,其泛化能力需要进一步验证。

  • VBI机理的复杂性:车辆与桥梁的相互作用是一个复杂的动力学过程,精确建模和理解对识别精度至关重要。

应用前景

基于桥梁振动自动识别车辆技术在多个领域具有广阔的应用前景:

  • 智能交通管理:实现车辆流量统计、车型分类统计,为交通拥堵预测、道路资源优化配置提供数据支持。

  • 桥梁健康监测:通过车辆激发的振动信号,实时监测桥梁的结构状态、损伤演化,为桥梁维护和加固提供依据。

  • 超载车辆检测:识别超载车辆对桥梁结构的危害极大,基于振动信号可以实现非接触式超载检测,提高执法效率。

  • 自动驾驶辅助:为自动驾驶车辆提供周围交通环境信息,辅助路径规划和决策。

  • 国家安全与边境管控:在特定区域用于车辆的监控和识别。

未来发展方向

为了克服当前面临的挑战并进一步提升该技术的性能,未来的研究方向可以集中在以下几个方面:

  • 多传感器融合:结合不同类型的传感器,如振动传感器、应变传感器、甚至低成本摄像头,相互补充信息,提高识别的鲁棒性。

  • 深度学习与迁移学习:发展更强大的深度学习模型,直接从原始信号中学习特征,并研究迁移学习技术,提高模型在不同桥梁或场景下的泛化能力。

  • 机理模型与数据驱动结合:将桥梁动力学模型与数据驱动方法相结合,更准确地理解VBI,提高车辆信息反演的精度。

  • 复杂交通流下的信号解耦:研究先进的信号处理技术,如盲源分离,以应对多车并行、跟驰等复杂交通场景下的信号混叠问题。

  • 大规模数据集的构建与共享:建立标准化的车辆类型分类体系和大规模、高质量的桥梁振动数据集,为算法研究和模型验证提供基础。

  • 低成本、低功耗传感器网络:发展低成本、无线、自供能的传感器节点,实现桥梁振动监测网络的广泛部署。

  • 边缘计算与实时处理:将部分数据处理和模型推理部署在边缘计算设备上,实现车辆的实时识别和信息反馈。

结论

基于桥梁振动自动识别车辆技术作为一种新兴的车辆监测手段,凭借其独特的优势,为交通管理和桥梁健康监测带来了新的视角和可能性。虽然目前该技术仍面临一些挑战,但随着传感器技术、信号处理技术和机器学习技术的不断发展,其性能将持续提升。未来,基于桥梁振动实现车辆的精准、鲁棒、实时的识别,有望成为构建智能交通系统和保障桥梁结构安全的重要组成部分,具有巨大的研究价值和应用潜力。通过持续的深入研究和工程实践,相信基于桥梁振动自动识别车辆的技术必将在未来发挥更加重要的作用。

⛳️ 运行结果

🔗 参考文献

[1] 王亚堃.大跨度自锚式悬索桥车桥耦合振动数值分析[D].长安大学,2008.DOI:10.7666/d.Y1527068.

[2] 邑强.基于车桥耦合振动分析的公路桥梁损伤识别方法研究[D].天津大学,2012.DOI:10.7666/d.Y2243036.

[3] 殷新锋.汽车荷载作用下梁式桥与斜拉桥的动态响应分析[D].湖南大学,2010.DOI:10.7666/d.y1725516.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值