理解Hinge Loss (折页损失函数、铰链损失函数)

理解Hinge Loss (折页损失函数、铰链损失函数) 原文:https://blog.csdn.net/fendegao/article/details/79968994 Hinge Loss是机器学习领域中的一种损失函数,可用于“最大间隔(max-margin)”分类,其最著名的应用是作...

2019-05-19 23:14:25

阅读数 9

评论数 0

peleenet测试

i7处理器: cpu80ms左右 gpu 37ms import time import torch import torch.nn as nn import math import torch.nn.functional as F class Conv_bn_relu(nn.M...

2019-05-17 10:21:08

阅读数 64

评论数 0

A-Softmax的总结及与L-Softmax的对比——SphereFace

原文: https://www.cnblogs.com/heguanyou/p/7503025.html 目录 1. A-Softmax的推导2. A-Softmax Loss的性质3. A-Softmax的几何意义4. 源码解读A-Softmax的效果与L-Softmax的区别 A-So...

2019-05-16 21:10:03

阅读数 51

评论数 0

C3F:首个开源人群计数算法框架

C3F:首个开源人群计数算法框架 导读:52CV曾经报道多篇拥挤人群计数相关的技术,比如最近的: CVPR 2019 | 西北工业大学开源拥挤人群数据集生成工具,大幅提升算法精度 开源地址: https://github.com/gjy3035/C-3-Framework 这...

2019-05-15 14:24:56

阅读数 49

评论数 0

姿态估计 2019

参考:http://ilovepose.luohuank.xin/t/69 1、Deep High-Resolution Representation Learning for Human Pose Estimation(目前SOTA,已经开源) 作者:Ke Sun, Bin Xiao, ...

2019-05-13 23:18:18

阅读数 30

评论数 0

CVPR2019|微软、中科大开源基于深度高分辨表示学习的姿态估计算法

参考:https://blog.csdn.net/weixin_37993251/article/details/88043650 昨天arXiv出现了好几篇被CVPR 2019接收的论文。 其中来自微软和中国科技大学研究学者的论文《Deep High-Resolution Represe...

2019-05-13 23:11:21

阅读数 43

评论数 0

yolov3 测试

torch版: darknet53 gpu 20ms cpu 300ms 和mobilenet v3 差不多快。 darknet21 gpu 7ms cpu 200多ms ShuffleNetV2 cpu版:23s gpu版:21ms

2019-05-13 20:41:15

阅读数 26

评论数 0

网络规模更小、速度更快,这是谷歌提出的MorphNet

原文 |https://ai.googleblog.com/2019/04/morphnet-towards-faster-and-smaller.html 深度神经网络(DNN)在解决图像分类、文本识别和语音转录等实际难题方面显示出卓越的效能。但是,为给定问题设计合适的 DNN 架构依然是...

2019-04-29 22:57:05

阅读数 27

评论数 0

模糊人脸数据集

人脸数据集: https://zhuanlan.zhihu.com/p/48347016 原文:http://www.atyun.com/18059.html 数据集是GOPRO数据集。您可以下载一个轻量版(9GB)或完整版(35GB)。它包含来自多个街景的模糊图像。数据集在子文件夹...

2019-04-28 11:23:33

阅读数 123

评论数 0

高效图像标注

Curve-GCN是一种高效交互式图像标注方法,其性能优于Polygon-RNN++。在自动模式下运行时间为29.3ms,在交互模式下运行时间为2.6ms,比Polygon-RNN ++分别快10倍和100倍。 https://mp.weixin.qq.com/s?__biz=MzI5MDU...

2019-04-15 11:06:03

阅读数 26

评论数 0

MobilePose 是一个轻量级的、基于 PyTorch 实现的单人姿态估计框架

MobilePose 是一个轻量级的、基于 PyTorch 实现的单人姿态估计框架 MobilePose 是一个轻量级的、基于 PyTorch 实现的单人姿态估计框架。目标旨在提供一个模型训练/推理/评估接口,以及具有各种数据增强选项的数据采集器。最终训练的模型在速度、大小和精度方面均可满足移动...

2019-04-10 20:41:51

阅读数 36

评论数 0

1500+ FPS!目前最快的CNN人脸检测算法开源

1500+ FPS!目前最快的CNN人脸检测算法开源 项目地址:https://github.com/ShiqiYu/libfacedetection 深圳大学的于仕琪老师发布的人脸检测库:libfacedetection 于昨日正式开源。这是一个基于CNN的人脸检测的开源库,CNN模...

2019-03-25 00:02:23

阅读数 200

评论数 0

人体检测数据集

CUHK03 都是小图,行人行走的站立图片。 旷世数据集:CrowdHuman 总共有6.7个G 15000张 http://www.crowdhuman.org/ WIDER_train 这个是人脸的: 转换为voc格式: https://blog.csdn.net/min...

2019-03-15 17:28:07

阅读数 104

评论数 0

人群计数最全代码、数据、论文合集

https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=2247487704&idx=1&sn=e0ea4c28c51cd153aaf388edaadb4d86&am...

2019-03-15 09:50:45

阅读数 206

评论数 0

yolov3 测试

  darknet53 在我1060上gpu 352*352 需要21ms,cpu需要900ms,但是参数比较多,占用内存比较大? 总时间需要30多ms import datetime import torch import torch.nn as nn import math fro...

2019-02-25 00:07:14

阅读数 80

评论数 0

PeleeNet 测试

352*352 1000 gpu需要41ms cpu需要240ms 分类数影响不大。 224*224 2 gpu需要34ms,cpu需要80ms import torch import torch.nn as nn import math import torch.nn.functional...

2019-02-24 12:02:15

阅读数 107

评论数 0

MnasNet 测试

MnasNet:352 352 需要21ms,听说准确率比shuffle v2高  cpu 17需要600ms  shuffle net V2 原版需要23ms,cpu需要200ms 改造 yolov3用: 需要30ms  cpu需要180ms 加上yolo层 230ms yolo v3: ...

2019-02-20 23:21:11

阅读数 59

评论数 0

DenseNet 测试

测试,网络深了也挺慢的。 深度40 分辨率32*32 cpu需要46ms from __future__ import print_function, division, absolute_import import time import torch import torch.nn a...

2019-02-20 22:36:13

阅读数 39

评论数 0

faceboxes自定义encode

  import numpy as np # anchors = np.array([[16, 32], [32, 16], [40, 40]]) import itertools import torch def iou( box1, box2): '''Compute the...

2019-02-05 14:54:43

阅读数 136

评论数 0

CornerNet 测试:

源码地址: https://github.com/feifeiwei/Pytorch-CornerNet 经过测试,p100上,测试直接内存溢出了。   # -*- coding: utf-8 -*- """ Created on Tu...

2019-02-04 23:49:13

阅读数 115

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭