pytorch save load

  import time import torch.utils.data.distributed from distributed.protocol import serialize, deserialize import cv2 import torch import torch.nn.f...

2018-11-23 10:33:22

阅读数:30

评论数:0

pytorch 读写t7

    In [1]: import torchfile In [2]: torchfile.load('testfiles_x86_64/list_table.t7') Out[2]: ['hello', 'world', 'third item', 123] In [3]: torchf...

2018-11-22 20:25:33

阅读数:14

评论数:0

pytorch 序列化性能测试

如果单张图片比,torch比opencv读写要快。但是数据量大了之后,也慢,100张图片一起,600ms左右。 import time from distributed.protocol import serialize, deserialize import cv2 import torch...

2018-11-22 20:11:51

阅读数:25

评论数:0

opencv转torch

opencv转torch: import time from distributed.protocol import serialize, deserialize import cv2 import torch import torch.nn.functional as f if __name...

2018-11-22 17:59:30

阅读数:34

评论数:1

torch序列化

  import time from distributed.protocol import serialize, deserialize import cv2 import torch import torch.nn.functional as f if __name__ == '__main...

2018-11-22 16:02:24

阅读数:14

评论数:0

torch.set_num_threads

  不设置,cpu51%,时间15ms 2的时候,cpu17%,时间15ms变为25ms 4的时候,cpu34%,时间17ms 8的时候,cpu67%, import time import torch import numpy as np while True: torc...

2018-11-20 17:01:44

阅读数:24

评论数:0

torch div优化

下面的方法比上面的快2倍左右,cpu占用差不多。 import cv2 if __name__ == '__main__':     path=r'D:\data\Original\JPEGImages\09981.jpg'     img_ = cv2.imread(path)     s...

2018-11-19 23:27:11

阅读数:19

评论数:0

Missing key(s) in state_dict

  Missing key(s) in state_dict 解决方法: try: from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.i...

2018-11-17 13:51:42

阅读数:108

评论数:0

torch 'ascii' codec can't decode byte 0xc3

  torch 'ascii' codec can't decode byte 0xc3   import pickle pickle.load = partial(pickle.load, encoding="latin1") pickle.Unpic...

2018-11-16 23:07:05

阅读数:52

评论数:0

torch 判断相等

  import torch x=torch.Tensor(0) y=torch.Tensor(1,2,3) print(torch.equal(x,torch.Tensor(0)))

2018-11-13 16:45:51

阅读数:56

评论数:0

torch bceloss nan

  当数据为空时,loss会为nan import torch a = torch.FloatTensor([]) b = torch.FloatTensor([]) loss_fn = torch.nn.BCELoss() # reduce=False, size_average=False...

2018-11-13 16:04:17

阅读数:48

评论数:0

torch byte筛选疑问

  import torch m=torch.Tensor([[0.1,0.2,0.3],[0.5,0.6,0.4]]) iou=torch.Tensor([0.5,0.6,0.7]) a=iou > 0.5 print(a) index=torch.Tensor([1,0...

2018-11-12 19:54:10

阅读数:44

评论数:0

torch uint8 筛选数据

iou > 0.5相当于uint8相当于byte类型,不能进行乘法操作。 数据类型转换: 转换后数据本身不变,只是筛选的时候规则改变了, index=torch.Tensor([0,1,1]).type(torch.ByteTensor) print(index) i...

2018-11-12 18:27:06

阅读数:68

评论数:0

torch max 判断与筛选

判断max是否大于0:item()后,就变成了一个值了, import torch y=torch.Tensor(1,2,3) if torch.max(y>=2).item():       print("max") else: ...

2018-11-12 10:53:10

阅读数:48

评论数:0

pytorch mseloss bceloss 对比

  1) 两个分布很接近,但是与0和1不接近,loss仍然很大,只适合分类 2)mse只计算两个差异,做回归用的,数据相同,bceloss比mseloss大。 3)SmoothL1Loss比mseloss小 4) bceloss收敛比较快 5)bceloss input必须是0-1之间,...

2018-11-05 17:35:00

阅读数:126

评论数:2

Focal Loss 的Pytorch

原文:https://zhuanlan.zhihu.com/p/28527749 参考:https://github.com/dinrker/Pytorch-TGS-Salt-Identification-Challenge/blob/87dbce3fdffa5c717a918994da364...

2018-10-23 22:42:51

阅读数:138

评论数:0

训练 梯度爆炸

  梯度爆炸,loss急剧增长, 原因:loss增长太快。 10.21 xy 的loss增长太快会导致。

2018-10-21 15:20:29

阅读数:35

评论数:0

pytorch nms 放大缩小

发现不同的尺寸,iou值是不一样的 w与y是同比例的,iou也不一样,框越大,iou越小 import torch def bbox_iou_test(box1, box2, x1y1x2y2=True): """ R...

2018-10-20 16:18:49

阅读数:39

评论数:0

pytorch mseloss测试

  两个分布一样,loss为0 #双方都有0,会减少loss x值不用在 0-1之间     mseloss测试 import torch conf_mask = torch.FloatTensor([0.0, 1.0, 0.0, 1.0, 1.0]) conf_data = to...

2018-10-17 09:12:58

阅读数:32

评论数:0

pytorch 归一化 测试(BatchNorm2d)

import torch import torch.nn as nn m = nn.BatchNorm2d(2,affine=True) #权重w和偏重将被使用 input = torch.randn(1,2,3,4) output = m(input) print("输...

2018-10-15 15:46:26

阅读数:71

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭