pytorch 归一化 测试(BatchNorm2d)

import torch import torch.nn as nn m = nn.BatchNorm2d(2,affine=True) #权重w和偏重将被使用 input = torch.randn(1,2,3,4) output = m(input) print("输...

2018-10-15 15:46:26

阅读数:22

评论数:0

pytorch 激活函数

  inplace=True会x把输入前的删掉了,都变成了输入后的, 没有inplace,输入还是输入,输出是新的了。 import torch import torch.nn as nn #inplace为True,将会改变输入的数据 ,否则不会改变原输入,只会产生新的输出 m = n...

2018-10-14 12:42:10

阅读数:21

评论数:0

pytorch筛选 相乘

  m需要和筛选的结果维度相同 import torch m=torch.Tensor([0.1,0.2,0.3]).cuda() iou=torch.Tensor([0.5,0.6,0.7]) x= m * ((iou > 0.5).type(torch.cuda....

2018-10-14 11:00:30

阅读数:4

评论数:0

pytorch permute维度转换

permute           prediction = input.view(bs, self.num_anchors,                                 self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2)...

2018-10-14 09:39:25

阅读数:15

评论数:0

pytorch索引查找 index_select

index_select anchor_w = self.FloatTensor(self.scaled_anchors).index_select(1, self.LongTensor([0])) 参数说明:index_select(x, 1, indices) 1代表维度1,即列,ind...

2018-10-14 09:36:59

阅读数:9

评论数:0

pytorch CrossEntropyLoss

数据类型只支持long类型 import torch  import torch.nn as nn loss = nn.CrossEntropyLoss() # input, NxC=2x3 input = torch.randn(2, 3, requires_grad=True) # ...

2018-10-13 21:29:52

阅读数:3

评论数:0

pytorch one-hot转数组

检索不为0的: import torch x = torch.Tensor([0,1,10,0,1]) print( torch.nonzero(x).squeeze())

2018-10-13 16:26:55

阅读数:1

评论数:0

pytorch 检索数组

检索不为0的: import torch x = torch.Tensor([0,1,10,0,1]) print( torch.nonzero(x).squeeze()) 检索别的数据,可以转换为这个函数可用的

2018-10-13 16:24:30

阅读数:6

评论数:0

python numpy数组和one-hot编码相互转换

  a=[0,0,1,0,1,0,1] result=[] for i, x in enumerate(a): if x==1: result.append(i) print(result)   python numpy数组和one-hot编码相互转换 201...

2018-10-13 16:04:04

阅读数:3

评论数:0

torch max函数

  这个能返回索引,但是是索引序号,原来的数据结构会破坏 torch.max(anch_ious, 1, keepdim=True)[1]   二维数组 max获取索引的正确方法: import torch anch_ious=torch.Tensor([[1,2,3],[4,5,6]...

2018-10-13 11:01:36

阅读数:11

评论数:0

torch cat用法

  import torch a= torch.FloatTensor([1,0,1]) b=torch.FloatTensor([0,0,1]) c=torch.cat((a.unsqueeze(0),b.unsqueeze(0)),0) print(c)

2018-10-12 18:57:45

阅读数:3

评论数:0

type torch.cuda.FloatTensor but found type torch.cuda.ByteTensor

  type torch.cuda.FloatTensor but found type torch.cuda.ByteTensor   train_label_batch = torch.from_numpy(train_label_batch) train_label_batch = ...

2018-10-11 14:55:45

阅读数:16

评论数:0

Pytorch的backward()相关理解

Pytorch的backward()相关理解 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/douhaoexia/article/details/78821428 最近一直在用pytorch做GAN相关的实验,pytorch 框架灵活易用,很...

2018-10-10 13:35:52

阅读数:18

评论数:0

pytorch删除空行

    import torch gt_batch = torch.ones([2,2])  gts=torch.Tensor()     for i in range(gt_batch.size(0)):       if torch.sum(gt_batch[i])&gt...

2018-10-09 18:04:35

阅读数:16

评论数:0

torch.squeeze()和unsqueeze()

torch.squeeze()和unsqueeze() unsqueeze() 函数功能:与squeeze()函数功能相反,用于添加维度。 queeze() 函数功能:去除size为1的维度,包括行和列。当维度大于等于2时,squeeze()无作用。 其中squeeze(0)代表若第一维...

2018-10-09 09:03:31

阅读数:16

评论数:0

concurrent.futures dataset

经过测试,没有发现比多线程块 import datetime import os import threading from concurrent.futures import ThreadPoolExecutor import numpy as np import logging impor...

2018-10-05 21:56:02

阅读数:23

评论数:0

DLL load failed: 页面文件太小,无法完成操作

  DLL load failed: 页面文件太小,无法完成操作    File "E:\git_track\DCFNet_pytorch\train\train_DCFNet.py", line 6, in <module&...

2018-10-04 19:02:16

阅读数:66

评论数:0

pytorch loss inf

  import torch a=torch.zeros(1) b=torch.ones(1,requires_grad=True) print(b/0)

2018-10-03 17:00:35

阅读数:39

评论数:0

Pytorch v0.4.1发布:添加频谱范数,自适应Softmax,优化CPU处理速度,添加异常检测NaN等

Pytorch v0.4.1发布:添加频谱范数,自适应Softmax,优化CPU处理速度,添加异常检测(NaN等)以及支持Python 3.7和CUDA 9.2支持   一、目录 突破性的变化 新功能 神经网络 自适应Softmax,频谱范数等 Operators to...

2018-10-03 16:34:43

阅读数:73

评论数:0

torch CrossEntropyLoss nan

torch CrossEntropyLoss nan 自己研究出来了,分子分母同时为0的时候,会报异常NaN import torch a=torch.zeros(1) b=torch.zeros(1,requires_grad=True) print(b/0)   During the...

2018-10-03 16:04:51

阅读数:44

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭