多目标跟踪FairMOT笔记

 

用了dcnv2

看起来只能在linux运行:

https://github.com/ifzhang/FairMOT

一个模型247m,一个668m

速度:而且相比其他算法速度也很快,达到30FPS。

算法改进

【改进点一】

作者解决的办法其实也很简单的,那就是不要使用基于anchor的目标检测方法嘛,用anchor-free的方法,尤其是以 Objects as points 为代表的方法,将目标检测看作为目标中心点检测的问题,依此中心点输出ReID特征。

看起来不错,关键点回归不对的时候,框也不对把?

【改进点二】

另外,两步法对尺度变化不敏感,为加强处理One-Shot MOT 类方法对大小目标通杀,作者引入了Multi-Layer Feature Aggregation,将网络高层次和低层次特征融合。

通道融合是正道,

【改进点三】

通常ReID问题中特征向量维度越大表现越好,但这需要大量的训练数据。在多目标跟踪的ReID问题中数据并不丰富,作者发现维度小一点其实更好,降低了过拟合的风险,还可以减少计算量。

算法框架:

 

 

 

 

 

 

 

 

 

 

 

 

参考:https://blog.csdn.net/jackzhang11/article/details/107648935

 

https://blog.csdn.net/moxibingdao/article/details/106667975?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-3.add_param_isCf&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-3.add_param_isCf

 

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页