场景切割 算法笔记2024

本文介绍了CVPR2022中的一项研究,使用无监督预训练进行视频场景分割。通过Resnet50提取图像特征,并利用LSTM进行时间序列的转场分类。数据集来源于ClipShots,模型可以基于TransNetV2进行实现。此外,还提及了OpenCV的scenedetect库用于场景检测,并提供了加阈值的方法。
摘要由CSDN通过智能技术生成

目录

无监督训练原理

SceneSegmentation算法介绍

源码地址:

数据集:

TransNet V2,视频镜头切换检测的神经网络利器

模型下载地址:

推理代码:

lstm模块 bilstm

opencv场景分割 scenedetect

加阈值:


无监督训练原理

就是自动数据增强,把不同的视频头尾拼接,自动生成标注,无需人工标注。

SceneSegmentation算法介绍

CVPR 2022丨无监督预训练下的视频场景分割_任务_Scene_镜头

原理,先用resnet50提取图像2048维特征

再用lstm做是否转场的时间序列特征分类,每次可能取20帧特征做分类。

源码地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>