# tensorflow学习笔记(三十二):conv2d_transpose ("解卷积")

deconv解卷积，实际是叫做conv_transposeconv_transpose实际是卷积的一个逆向过程，tf 中， 编写conv_transpose代码的时候，心中想着一个正向的卷积过程会很有帮助。

input_shape = [1,5,5,3]
kernel_shape=[2,2,3,1]
strides=[1,2,2,1]
padding = "SAME"

import tensorflow as tf
tf.set_random_seed(1)
x = tf.random_normal(shape=[1,3,3,1])
#正向卷积的kernel的模样
kernel = tf.random_normal(shape=[2,2,3,1])

# strides 和padding也是假想中 正向卷积的模样。当然，x是正向卷积后的模样
y = tf.nn.conv2d_transpose(x,kernel,output_shape=[1,5,5,3],
# 在这里，output_shape=[1,6,6,3]也可以，考虑正向过程，[1,6,6,3]
# 通过kernel_shape:[2,2,3,1],strides:[1,2,2,1]也可以
# 获得x_shape:[1,3,3,1]
# output_shape 也可以是一个 tensor
sess = tf.Session()
tf.global_variables_initializer().run(session=sess)

print(y.eval(session=sess))
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 10
• 11
• 12
• 13
• 14
• 15
• 16
• 17

conv2d_transpose 中会计算 output_shape 能否通过给定的参数计算出 inputs的维度，如果不能，则报错

import tensorflow as tf
from tensorflow.contrib import slim

inputs = tf.random_normal(shape=[3, 97, 97, 10])

conv1 = slim.conv2d(inputs, num_outputs=20, kernel_size=3, stride=4)

de_weight = tf.get_variable('de_weight', shape=[3, 3, 10, 20])

deconv1 = tf.nn.conv2d_transpose(conv1, filter=de_weight, output_shape=tf.shape(inputs),
strides=[1, 3, 3, 1], padding='SAME')

# ValueError: Shapes (3, 33, 33, 20) and (3, 25, 25, 20) are not compatible
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 10
• 11
• 12
• 13

• conv1 的 shape 是 (3, 25, 25, 20)
• 但是 deconv1 对 conv1 求导的时候，得到的导数 shape 却是 [3, 33, 33, 20]，这个和 conv1 的shape 不匹配，当然要报错咯。
import tensorflow as tf
from tensorflow.contrib import slim
import numpy as np

inputs = tf.placeholder(tf.float32, shape=[None, None, None, 3])

conv1 = slim.conv2d(inputs, num_outputs=20, kernel_size=3, stride=4)

de_weight = tf.get_variable('de_weight', shape=[3, 3, 3, 20])

deconv1 = tf.nn.conv2d_transpose(conv1, filter=de_weight, output_shape=tf.shape(inputs),
strides=[1, 3, 3, 1], padding='SAME')

loss = deconv1 - inputs

with tf.Session() as sess:
tf.global_variables_initializer().run()

for i in range(10):
data_in = np.random.normal(size=[3, 97, 97, 3])
_, los_ = sess.run([train_op, loss], feed_dict={inputs: data_in})
print(los_)
# InvalidArgumentError (see above for traceback): Conv2DSlowBackpropInput: Size of out_backprop doesn't match computed: actual = 25, computed = 33
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 10
• 11
• 12
• 13
• 14
• 15
• 16
• 17
• 18
• 19
• 20
• 21
• 22
• 23
• 24

• conv1 的 shape 第二维或第三维的 shape 是 25
• 但是 deconv1 对 conv1 求导的时候，得到的 倒数 shape 的第二位或第三维却是 33

deconv 求导就相当于 拿着 conv_transpose 中的参数对 deconv 输出的值的导数做卷积。

## 如何灵活的控制 deconv 的output shape

• 传入 tensor
# 可以用 placeholder
outputs_shape = tf.placeholder(dtype=tf.int32, shape=[4])
deconv1 = tf.nn.conv2d_transpose(conv1, filter=de_weight, output_shape=output_shape,
strides=[1, 3, 3, 1], padding='SAME')

# 可以用 inputs 的shape，但是有点改变
inputs_shape = tf.shape(inputs)
outputs_shape = [inputs_shape[0], inputs_shape[1], inputs_shape[2], some_value]
deconv1 = tf.nn.conv2d_transpose(conv1, filter=de_weight, output_shape=outputs_shape,
strides=[1, 3, 3, 1], padding='SAME')