C#的第7节课

本文深入探讨了C#中的类方法与成员函数概念,包括方法的定义、参数传递方式、值与引用的区别,以及构造函数和析构函数的作用。同时介绍了如何在类中使用数据成员,并解释了局部变量的概念。

                  今天主要讲类方法和成员函数,创建自己的方法;使用参数将信息传递给例程;值和引用的概念;调用方法的概念;构造函数;释放类。方法可以返回一个值,write writeline和readline在每一个程序中,使用了main方法。方法的基本格式为:method header(method body).方法头定义了关于方法的几项内容,对方法的访问权限,返回的数据类型,传递给方法的,方法的名称。方法的返回数据类型可以是任何合法的数据类型,在方法体中,必须将一个返回数据类型的值返回给调用该方法的程序。要从方法返回一个值,可以使用关键字return后面跟一个数据类型文方法头中指定的值或变量。方法体包含方法被调用时所执行的代码,这些代码以左花括号开始,以右花括号结束。要使用方法,调用它即可。在方法中使用数据成员,当area方法被调用时,将使用特定的对象进行调用。当使用circlel调用概方法时circlel中的所有常规数据成员和其他方法都将是可用的。在类的成员方法中,还可以声明其他变量,这些变量只在方法运行时有效,他们被称为方法的局部变量。在area方法中,创建病使用了一个double变量the area方法运行完毕后,存储在变量 the area中的值以及the area变量本身都将不复存在。如 何访问方法,如何在方法中声明局部变量以及如何使用方法所属类的属据成员要使用其他类或另一个方法的一个或多个值方法被调用时,可以接受值,必须在方法头中定义参数。static 限定符使数据成员与类而不是特定的对象关联在一起。给方法传递的是值。方法将获得这些值得一个拷贝,然后使用这些拷贝。当方法运行完毕后,这些拷贝将被丢弃,按值传递只是其中的一种 递方式,参数的访问 属性有三类:值;引用;输出(out);以值得方式访问参数时,参数的一个拷贝将被传递给方法,然后方法使用这些拷贝而原来的值不受影响。需要修改原来的变量中存储的值,在这种情况下,可以传递到变量的要、引用而不是变量的值。

      需要修改原来变量中存储的值,在这种情况下,可以传递到变量的引用,而不是变量的值,引用是一个变量,它可以访问原来的变量,修改引用,将修改原来变量的值。只是需要将其属性设置为关键字out。该关键字指示从方法返回一个值,但不需要传入,调用包含输出参数的方法时一定需要包含用于存储返回值得变量,属性存储器的方法,构造函数,析构函数,set和get这些方法让你能够是数据成员为私有的。在对象被创建时,你想做一些设置,有一种特殊的方法转门用于完成对象初始设置或构造,这种方法叫做构造函数。

在每个实例或对象创建时被调用叫实例构造函数。在类的第一对象被创建之前被调 用,叫静态构造函数实例构造函数是一个方法,每当实例化一个对象时,该方法都将被调用,这种构造函数可以包含常规函数能包含的任何代码构造函数通常用于完成对象的初始化设置,可以包含诸如初始化变量等功能。构造函数的名称与其所属的类相同,其中 现定符与用于其他方法的限定符相同,通常只使用public,不知定返回数据类型

       每一个类都有一个默认的构造函数,记使你只有创建任何构造函数。通过创建 构造函数,可以控制某些设置,每当你创建一个对象时,相应类的构造函数都将会被调用。使用限定符static声明的构造函数将在第一对象被创建之前被调用, 它只被调用一次,以后便不再被使用

      可以在对象被释放时执行某些操作,这只在析构函数中实现的。在C#中析构函数只使用后跟类名和空括号的代字号来定义的

【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)内容概要:本文档聚焦于五种优化算法(A、HO、CP、GOOSE、NRBO)与BP神经网络结合的回归预测性能比较研究,所有内容均基于Matlab代码实现。研究属于创新未发表成果,涵盖机器学习、深度学习、智能优化算法等多个科研方向的应用实例,尤其在时序预测、回归分析等领域。文档还列举了大量相关题,如微电网多目标优化调度、储能选址定容、轴承故障诊断等,展示了广泛的科研应用场景和技术实现手段。; 适合人群:具备一定Matlab编程基础,从事科研或工程应用的研究人员,尤其是关注智能优化算法与神经网络结合应用的硕士、博士研究生及科研工作者。; 使用场景及目标:①用于科研项目中对比不同优化算法对BP神经网络回归预测性能的影响;②为相关领域如能源调度、故障诊断、负荷预测等提供算法实现参考与代码支持;③辅助学术论文撰写与实验验证。; 阅读建议:此资源以实际Matlab代码为核心,建议读者结合文档中提供的网盘链接获取完整代码资源,并在实践中运行和调试代码,深入理解各算法的实现细与优化机制。同时建议按目录顺序系统学习,以便构建完整的知识体系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值