这一篇要总结的是选择排序,选择排序分为直接选择排序和堆排序,主要从以下几点进行总结。
1、直接选择排序及算法实现
2、堆排序及算法实现
1、直接选择排序及算法实现
直接选择排序(Straight Select Sort) 是一种简单的排序方法,它的基本思想是:通过length-1 趟元素之间的比较,从length-i+1个元素中选出最小的元素,并和第i个元素交换位置。直接选择排序的最坏时间复杂度为O(n2),平均时间复杂度为O(n2)
下图展示了直接选择排序的过程。
1-1、示意图
1-2、代码
SelectionSort.java
public class SelectionSort {
public static void main(String[] args) {
int[] list = {9, 1, 2, 5, 7, 4, 8, 6, 3, 5};
System.out.println("************直接选择排序************");
System.out.println("排序前:");
display(list);
System.out.println("");
System.out.println("排序后:");
selectionSort(list);
display(list);
}
/**
* 直接选择排序算法
*/
public static void selectionSort(int[] list) {
// 要遍历的次数(length-1次)
for (int i = 0; i < list.length - 1; i++) {
// 将当前下标定义为最小值下标
int min = i;
// 遍历min后面的数据
for (int j = i + 1; j <= list.length - 1; j++) {
// 如果有小于当前最小值的元素,将它的下标赋值给min
if (list[j] < list[min]) {
min = j;
}
}
// 如果min不等于i,说明找到真正的最小值
if (min != i) {
swap(list, min, i);
}
}
}
/**
* 交换数组中两个位置的元素
*/
public static void swap(int[] list, int min, int i) {
int temp = list[min];
list[min] = list[i];
list[i] = temp;
}
/**
* 遍历打印
*/
public static void display(int[] list) {
System.out.println("********展示开始********");
if (list != null && list.length > 0) {
for (int num :
list) {
System.out.print(num + " ");
}
System.out.println("");
}
System.out.println("********展示结束********");
}
}
测试结果:
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法(比如序列[5, 5, 3]第一次就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面)
算法分析
其实选择排序是非常简单的,和冒泡排序有异曲同工之妙。就是把元素分成两部分,一部分是有序的,另外一部分是无序的;每次循环从无序的元素中选取一个元素放到有序的元素中,依次循环到最后把所有元素都放到了有序那一部分中(也就是无序部分,元素为零);
基本思路:
1、外循环:循环每个位置(其实就是选择了这个位置,然后用内循环去选择一个合适的数,放到这个位置);
2、内循环:在无序元素中选择一个合适的数;
3、把第二步选中的数据放到第一步选中的位置上就可以了;
时间复杂度
选择排序的时间复杂度不像前面几种排序方法那样,前面几种排序方法的时间复杂度不是一眼就能看出来的,而是要通过推导计算才能得到的。一般会涉及到递归和完全二叉树,所以推导也不是那么容易。但是选择排序就不一样了,你可以很直观的看出选择排序的时间复杂度:就是两个循环消耗的时间;
比较时间:T = (n-1))+ (n -2)+(n - 3).... + 1; ===>> T = [n*(n-1) ] / 2;
交换时间:最好的情况全部元素已经有序,则 交换次数为0;最差的情况,全部元素逆序,就要交换 n-1 次;
所以最优的时间复杂度 和最差的时间复杂度 和平均时间复杂度 都为 :O(n^2)
空间复杂度
空间复杂度,最优的情况下(已经有顺序)复杂度为:O(0) ;
最差的情况下(全部元素都要重新排序)复杂度为:O(n );;
平均的时间复杂度:O(1)
2、堆排序及算法实现
堆排序(Heap Sort) 利用堆(一般为大根堆)进行排序的方法。它的基本思想是:将待排序的元素构造成一个大根堆。此时,整个序列的最大值就是堆顶的根节点。将它移走(其实就是将它与数组的末尾元素进行交换,此时末尾元素就是最大值),然后将剩余的length-1 个元素重新构造成一个大根堆,这样就会得到length个元素中的次大值。如此反复执行,便能得到一个有序的序列。
堆是具有下列性质的完全二叉树:每个节点的值都大于或等于其左右孩子节点的值,称为大根堆;每个节点的值都小于或等于其左右孩子节点的值,称为小根堆。
堆排序的最坏时间复杂度为O(n*log2n),平均时间复杂度为O(n*log2n)
2-1、示意图
图一:
图二:
图三:
图四:
图五:
图六:
2-2、代码
HeapSort.java
public class HeapSort {
public static void main(String[] args) {
int[] list = {1, 3, 4, 5, 2, 6, 9, 7, 8, 0};
System.out.println("************堆排序************");
System.out.println("排序前:");
display(list);
System.out.println("");
System.out.println("排序后:");
heapSort(list);
display(list);
}
/**
* 堆排序算法
*/
public static void heapSort(int[] list) {
// 将无序堆构造成一个大根堆,大根堆有length/2个父节点
for (int i = list.length / 2 - 1; i >= 0; i--) {
headAdjust(list, i, list.length);
}
// 逐步将每个最大值的根节点与末尾元素交换,并且再调整其为大根堆
for (int i = list.length - 1; i > 0; i--) {
// 将堆顶节点和当前未经排序的子序列的最后一个元素交换位置
swap(list, 0, i);
headAdjust(list, 0, i);
}
}
/**
* 构造大根堆
*/
public static void headAdjust(int[] list, int parent, int length) {
// 保存当前父节点
int temp = list[parent];
// 得到左孩子节点
int leftChild = 2 * parent + 1;
while (leftChild < length) {
// 如果parent有右孩子,则要判断左孩子是否小于右孩子
if (leftChild + 1 < length && list[leftChild] < list[leftChild + 1]) {
leftChild++;
}
// 父亲节点大于子节点,就不用做交换
if (temp >= list[leftChild]) {
break;
}
// 将较大子节点的值赋给父亲节点
list[parent] = list[leftChild];
// 然后将子节点做为父亲节点
parent = leftChild;
// 找到该父亲节点较小的左孩子节点
leftChild = 2 * parent + 1;
}
// 最后将temp值赋给较大的子节点,以形成两值交换
list[parent] = temp;
}
/**
* 交换数组中两个位置的元素
*/
public static void swap(int[] list, int top, int last) {
int temp = list[top];
list[top] = list[last];
list[last] = temp;
}
/**
* 遍历打印
*/
public static void display(int[] list) {
System.out.println("********展示开始********");
if (list != null && list.length > 0) {
for (int num :
list) {
System.out.print(num + " ");
}
System.out.println("");
}
System.out.println("********展示结束********");
}
}
测试结果:
堆排序是由1991年的计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特.弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了的一种排序算法( Heap Sort );
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
算法分析
其实这种算法看起来挺复杂,但是如果真正理解了就会感觉非常简单的;
基本思想:把待排序的元素按照大小在二叉树位置上排列,排序好的元素要满足:父节点的元素要大于等于其子节点;这个过程叫做堆化过程,如果根节点存放的是最大的数,则叫做大根堆;如果是最小的数,自然就叫做小根堆了。根据这个特性(大根堆根最大,小根堆根最小),就可以把根节点拿出来,然后再堆化下,再把根节点拿出来,,,,循环到最后一个节点,就排序好了。
基本步骤:
其实整个排序主要核心就是堆化过程,堆化过程一般是用父节点和他的孩子节点进行比较,取最大的孩子节点和其进行交换;但是要注意这应该是个逆序的,先排序好子树的顺序,然后再一步步往上,到排序根节点上。然后又相反(因为根节点也可能是很小的)的,从根节点往子树上排序。最后才能把所有元素排序好;具体的操作可以看代码,也可以看看下面的图示:
时间复杂度
堆排序的时间复杂度,主要在初始化堆过程和每次选取最大数后重新建堆的过程;
初始化建堆过程时间:O(n)
推算过程:
首先要理解怎么计算这个堆化过程所消耗的时间,可以直接画图去理解;
假设高度为k,则从倒数第二层右边的节点开始,这一层的节点都要执行子节点比较然后交换(如果顺序是对的就不用交换);倒数第三层呢,则会选择其子节点进行比较和交换,如果没交换就可以不用再执行下去了。如果交换了,那么又要选择一支子树进行比较和交换;
那么总的时间计算为:s = 2^( i - 1 ) * ( k - i );其中 i 表示第几层,2^( i - 1) 表示该层上有多少个元素,( k - i) 表示子树上要比较的次数,如果在最差的条件下,就是比较次数后还要交换;因为这个是常数,所以提出来后可以忽略;
S = 2^(k-2) * 1 + 2^(k-3)*2.....+2*(k-2)+2^(0)*(k-1) ===> 因为叶子层不用交换,所以i从 k-1 开始到 1;
这个等式求解,我想高中已经会了:等式左右乘上2,然后和原来的等式相减,就变成了:
S = 2^(k - 1) + 2^(k - 2) + 2^(k - 3) ..... + 2 - (k-1)
除最后一项外,就是一个等比数列了,直接用求和公式:S = { a1[ 1- (q^n) ] } / (1-q);
S = 2^k -k -1;又因为k为完全二叉树的深度,所以 (2^k) <= n < (2^k -1 ),总之可以认为:k = logn (实际计算得到应该是 log(n+1) < k <= logn );
综上所述得到:S = n - longn -1,所以时间复杂度为:O(n)
更改堆元素后重建堆时间:O(nlogn)
推算过程:
1、循环 n -1 次,每次都是从根节点往下循环查找,所以每一次时间是 logn,总时间:logn(n-1) = nlogn - logn ;
综上所述:堆排序的时间复杂度为:O(nlogn)
空间复杂度
因为堆排序是就地排序,空间复杂度为常数:O(1)