AcWing 算法基础课笔记【基础算法篇】3.高精度运算

AcWing 算法基础课笔记【基础算法篇】3. 高精度运算

大整数存储

思路

存储时要倒着存,方便进位,如 A [ 0 ] A[0] A[0]对应个位, A [ 1 ] A[1] A[1]对应十位,以此类推

模板

string a, b;
vector<int> A, B; // #include <vector>
cin >> a >> b;
for(int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
for(int i = b.size() - 1; i >= 0; i--) B.push_back(b[i] - '0');
    
auto C = add(A, B);
for(int i = C.size() - 1; i >= 0; i--) cout << C[i];

高精度加法

思路

第一步,存储大整数

第二步,用t当作上一位的进位,初始设为0,C为答案数组

  1. t = A i + B i + t t=A_{i}+B_{i}+t t=Ai+Bi+t
  2. t t t的个位为 C i C_{i} Ci的值,十位表示是否有进位
  3. t t t变为自身的十位(0或1)
  4. 当最高位仍有进位时,将则在数组 C C C最后面加上一位1

第三步,从末尾开始倒序输出C数组

模板

vector<int> add(vector<int> &A, vector<int> &B){ // 使用&A就不需要复制整个数组
    vector<int> C;
    
    int t = 0;
    for(int i = 0; i < A.size() || i < B.size(); i++){
        if(i < A.size()) t += A[i];
        if(i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }
    
    if(t) C.push_back(1);
    return C;
}

高精度减法

思路

第一步 存储大整数,判断A与B的大小

// 判断A是否>=B
bool cmp(vector<int> &A, vector<int> &B){
    if(A.size() != B.size()) return A.size() > B.size();
    
    for(int i = A.size() - 1; i >= 0; i--){
        if(A[i] != B[i]) return A[i] > B[i]
    }
    return true;
}
int main(){

	···
	
    if(cmp(A, B)){
        auto C = sub(A, B);
        for(int i = C.size() - 1; i >= 0; i--) cout << C[i];
    }
    else{
        auto C = sub(B, A);
        cout << '-';
        for(int i = C.size() - 1; i >= 0; i--) cout << C[i];
    }
    
	···

}

第二步,用C作为答案数组,t作为借位,开始相减

  1. A i − B i − t < 0 A_{i}-B_{i}-t<0 AiBit<0,则将该式 + 10 +10 +10赋给 C i C_{i} Ci,且 t = 1 t=1 t=1
    若大于0,则直接将该式赋给 C i C_{i} Ci,且 t = 0 t=0 t=0
  2. 最后删除数组 C C C中存在的多余的0

模板

vector<int> sub(vector<int> &A, vector<int> &B){
    vector<int> C;
    for(int i = 0, t = 0; i < A.size(); i ++){
        t = A[i] - t;
        if(i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10); // 若t小于0,则该式表示t+10;若t大于0,则该式表示t
        if(t < 0) t = 1;
        else t = 0;
    }
    
    while(C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

高精度乘法(低精乘高精)

思路

用t当作上一位的进位,初始 t = 0 t=0 t=0,C为答案数组

  1. t = A i ∗ b + t t=A_{i}*b+t t=Aib+t
  2. t t t的个位为 C i C_{i} Ci
  3. t t t的进位为 t / 10 t/10 t/10
  4. 若最后还有进位,则一位一位加上
  5. 最后删除数组 C C C中存在的多余的0

模板

vector<int> mul(vector<int> &A, int b){
    vector<int> C;
    
    for(int i = 0, t = 0; i < A.size() || t; i++){
        if(i < A.size()) t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }
    while(C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

高精度除法(高精除以低精)

思路

用r作为上一位的余数,从最高位开始除

  1. r = r ∗ 10 + A i r=r*10+A_{i} r=r10+Ai,则商 C i C_{i} Ci r / b r/b r/b,余数r为 r / b r/b r/b的余数
  2. 反转数组C
  3. 除去前端的0

模板

vector<int> div(vector<int> &A, int b, int &r){
    vector<int> C;
    r = 0;
    for(int i = A.size() - 1; i >= 0; i--){
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    
    reverse(C.begin(), C.end());
    while(C.size() > 1 && C.back() == 0) C.pop_back(); // C数组的尾部的0即为输出数据前端的0
    return C;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值