经典算法——韩信点兵问题的简单算法

        搞开发的人都需要积累一些经典算法,以备不时之须。

        搞开发也有好几年了,积累的一些算法一直没做过整理,这段时间无聊就把这些算法整理以下,以备以后之用。

        本文是关于阶梯的一个算法,用到了剩余定理算法,分享下:

        爱因斯坦曾出过这样一道有趣的数学题,有一个长阶梯,每步上2阶,最后剩1阶;若每步上3阶,最后剩2阶,若每步上5阶,后剩4阶;若每步上6阶,最后剩5阶;只有每步上7阶,最后一阶也不剩。问至少有多少阶阶梯?

        这个是我国古代的韩信点兵问题:古人用剩余定理口算或心算,有计算机以后,可以由计算机帮忙解决了,算法很简单(JAVA实现):
        package com.jack.arithmetic;

/**
 * 韩信点兵算法
 * @author jack
 * @date  2010/08/06
 */
public class Ladder {

 public static void main(String[] args) {
  int count = 0;
  while(count>=0){
   if ((count % 2 == 1) && count % 3 == 2 && count % 5 == 4 && count % 6 == 5
     && count % 7 == 0) {
    System.out.print("这个数字是:" + count);
    break;
   }else{
    count++;    
   }
  }
 }
}
注:因为并没有告诉你会有多少阶梯,所以此处使用while循环进行处理,当出现满足所有条件的数时,显示此数,并结束循环;否则每次对count进行加加操作。
其实细想一下,能够被7整除,说明这个数一定是7的倍数,下面再改进一下算法:
int count = 0;
  while(count>=0){
   if ((count % 2 == 1) && count % 3 == 2 && count % 5 == 4 && count % 6 == 5
     && count % 7 == 0) {
    System.out.print("这个数字是:" + count);
    break;
   }else{
    count += 7;
   }
  }

注意:7是奇数却可以被整除,故结果一定是7的整数倍:

int c = 7;
  while(c>=0){
   if (c % 2 == 1 && c % 3 == 2 && c % 5 == 4 && c % 6 == 5) {
    System.out.print("这个数字是:" + c);
    break;
   }else{
    c = c + 14;
   }
  }

再考虑:台阶阶梯总数加一是为2、3、5、6的最小公倍数,而且是7的倍数,所以定是30的倍数减1,可得如下算法:
            int x;
            for (int i = 1; i < 10; i++)
            {
                if ((i * 30 - 1) % 7 == 0)
                {
                    x = (i * 30 - 1);
                    System.out.println("这个数字是:" + x.ToString());
                }
            }

原文(作者博客)地址:www.52cfml.com

 

阅读更多
换一批

没有更多推荐了,返回首页