图论:连通分量专题 (三个大佬Tarjan算法)

概念定义

连通分量的定义

独立且完整的连通块。
如下图就是三个连通分量。

有向图的强连通分量 SCC

由原图的某一部分(顶点和连接这些顶点的有向边)组成。 在这个子图中, 保持 “极大” 与 强连通性。

强连通性

一个有向图(或子图)是强连通的,指的是对于其中任意两个顶点 u u u v v v,都同时存在以下两条路径:
* 一条从 u u u v v v 的有向路径。
* 一条从 v v v u u u 的有向路径。

极大

一个强连通子图被称为“极大”,意味着你不能再从原图 G G G 中添加任何其他的顶点,还能使这个子图保持强连通。

总结:一个强连通分量是一个包含了所有能相互到达的顶点的“闭环集合”,并且这个集合已经不能再扩大了。

示例

在这里插入图片描述
这个有向图包含 3 个强连通分量:

  1. SCC 1: {1, 2, 3, 5}
  2. SCC 2: {4}
  3. SCC 3: {6}

求强连通分量的目的

在某些题目中存在,且在同一个环中的点有某种相同的性质,那么通过求出强连通分量,再进行缩点,将原图转换成拓扑图(有向无环图 DAG)会大大简化程序的复杂度,就可以在DAG上递推,得到正确的答案。

算法 : Tarjan 求 SCC

Tarjan 算法是一种基于深度优先搜索(DFS)的线性时间复杂度算法。它通过一次 DFS 遍历,就能找出有向图中的所有强连通分量。

核心数据结构

算法为图中的每个顶点 u 维护两个关键的整数值:

  1. dfn[u] (时间戳)

    • 定义:在 DFS 过程中,顶点 u 被首次访问到的“时间戳”或“次序编号”。dfn 值是严格递增且唯一的。通常用一个全局计数器来实现。
  2. low[u]

    • 定义:从顶点 u 出发,通过 DFS 搜索树中的边以及最多一条非树边(non-tree edge),能够到达的所有顶点中最小的 dfn
    • 通俗解释low[u] 代表了 uu 的 DFS 子树中的节点,能够通过返祖边(back edge)回溯到的最早的祖先节点的 dfn 值。

除了这两个数组,算法还需要一个来存储当前 DFS 路径上的顶点。一个顶点进入 DFS 递归时入栈,在它所属的 SCC 被完全找到后出栈。


算法流程

算法的主体是一个 DFS 函数,通常命名为 tarjan(u)

  1. 初始化

    • dfnlow 数组初始化为某个标记值(如 0 或 -1),表示未访问。
    • 时间戳计数器 timestamp 初始化为 0。
    • S 为空。
    • 遍历所有顶点,如果顶点 i 未被访问,则调用 tarjan(i)
  2. tarjan(u) 函数执行过程
    a. 标记访问和入栈

    • u 标记为已访问。
    • 设置 dfn[u] = low[u] = ++timestamp。这表示 u 最初只能到达它自己。
    • u 压入栈 S 中。

    b. 遍历 u 的邻接点 v
    对于从 u 出发的每一条边 (u, v)

    • Case 1: v 未被访问

      • 递归调用 tarjan(v)
      • 递归返回后,v 及其子树的 low 值已经计算完毕。u 可以通过树边 (u, v) 到达 v 的子树所能到达的一切节点。因此,用 low[v] 来更新 low[u]
        low[u] = min(low[u], low[v])
    • Case 2: v已被访问,且 v 在栈 S

      • 这说明边 (u, v) 是一条返祖边(Back Edge),它从 u 指向了 DFS 树中 u 的一个祖先 v
      • 这条边提供了一条从 u 回到更早节点 v 的路径。因此,用 dfn[v] 来更新 low[u]
        low[u] = min(low[u], dfn[v])
      • 注意:这里必须用 dfn[v] 而不是 low[v]。因为边 (u, v) 直接连接到 v,我们只关心这条边本身提供的回溯能力。low[v] 可能是一个更小的值,但那是通过 v 的其他路径实现的,与 (u, v) 这条边无关。
    • Case 3: v 已被访问,但 v 不在栈 S

      • 这说明 v 属于一个已经被确定并从栈中弹出的 SCC。边 (u, v) 是一条横叉边(Cross Edge)前向边(Forward Edge),它连接到另一个已经处理完毕的 SCC。这条边对于寻找 u 所在的 SCC 没有帮助,因此忽略它。

    c. 判断 u 是否为 SCC 的根
    u 的所有邻接点都处理完毕后,检查以下条件:
    if (dfn[u] == low[u])

    • 条件成立的意义
      这个等式意味着 u 是其所在 SCC 的根节点u 及其在 DFS 树中的后代节点,都无法通过返祖边到达比 u 更早被访问的节点。u 是这个子结构中 dfn 最小的节点。
    • 找到一个 SCC
      此时,从栈 S 的顶部开始,不断弹出顶点,直到 u 被弹出。所有这些被弹出的顶点 {..., v, u} 共同构成了一个完整的强连通分量。将它们收集起来即可。

算法的关键点总结

  1. DFS 树:算法隐式地构建了一棵深度优先搜索树。边被分为树边、返祖边、前向边和横叉边。
  2. low 值的更新逻辑low[u] 的值是通过两条路径更新的:
    • 通过其子节点 vlow[v](即利用子树的回溯能力)。
    • 通过直接连接到栈中祖先 vdfn[v](即利用返祖边的回溯能力)。
  3. 根节点的判定dfn[u] == low[u] 是判定一个节点 u 是否为一个 SCC 根的充要条件。这个条件确保了所有能与 u 强连通的节点都包含在以 u 为根的 DFS 子树中(并且通过返祖边连接),且无法连接到 u 的祖先。
  4. 栈的作用:栈 S 精确地维护了当前尚未确定所属 SCC 的所有顶点。当一个 SCC 的根被找到时,这个 SCC 的所有成员都保证在栈的顶部连续存放,使得弹出操作可以正确地收集所有成员。

算法时间复杂度

Tarjan 算法通过这种 dfnlow 值的设计,在一次遍历中同时完成了 DFS 探索和 SCC 的识别,其时间复杂度和空间复杂度均为 O(V + E),其中 V 是顶点数,E 是边数。

缩点经过

定义 id[x] 表示 x 点所在的 强连通分量的编号。

  1. 枚举每一个点 u u u
  2. 枚举 u u u 的所有连边, 边的另一个端点为 v v v,
  3. 判断 id[u] 是否等于 id[v] , 即判断, u u u 所属于的SCC和 v v v所属于的SCC 是否为同一个
  4. 如果不是则在新图上添加一条重节点 id[u] 到节点 id[v] 的边。

模板程序

#include <bits/stdc++.h>

using namespace std;

const int N = 2e5 + 5; // 最多有2e5个点

int n, m; // n个点,m条有向边
int dfn[N], low[N], tsp;
int stk[N], top; // 数组模拟栈
int id[N], cnt; // 记录每个点所属于的连通块, cnt 代表 SCC 的数量
bool vis[N]; // vis[u]记录 u是否在栈中
vector<int> ed[N], hs[N]; // 使用邻接表的方法存老图和新图
void tarjan(int u)
{
    dfn[u] = low[u] = ++ tsp;
    stk[ ++ top ] = u, vis[u] = true; // 将u压栈
    for(auto v : ed[u]){
        if(!dfn[v]){
            tarjan(v);
            low[u] = min(low[u], low[v]);
        }else if(vis[v]) low[u] = min(low[u], dfn[v]);
    }
    if(dfn[u] == low[u]){
        ++ cnt;
        int tp;
        do{
            tp = stk[ top -- ];
            vis[tp] = false;
            id[tp] = cnt;
        }while(u != tp); // 将以u为最高点的SCC全部弹出
    }
}
int main()
{
    cin >> n >> m;

    for(int i = 1; i <= m; i ++ ){
        int u, v; cin >> u >> v;
        ed[u].push_back(v);
    }

    for(int i = 1; i <= n; i ++ ) // 防止原图不是连通图
        if(!dfn[i]) tarjan(i); 
    
    // 缩点
    for(int i = 1; i <= n; i ++ ){
        for(auto v : ed[i]){
            int a = id[i], b = id[v];
            if(a != b) hs[a].push_back(b);
        }
    }
    return 0;
}

无向图的双连通分量

1. 割点

定义:
在一个无向连通图中,如果移除某个顶点 v 以及所有与它相关联的边后,剩下的图不再连通(即分裂成两个或更多个连通分量),那么顶点 v 就被称为割点
关键性质:
一个割点至少属于两个包含该割点的点双连通分量。
示例 :
在这里插入图片描述
如果将3号点删去,那么图将不再连通:
在这里插入图片描述

如果将4号点删去,图也不再连通:
在这里插入图片描述

2. 桥

定义:
在一个无向连通图中,如果移除某条边 e 后,图不再连通(分裂成两个连通分量),那么边 e 就被称为

关键性质:
一条边是桥,当且仅当这条边不属于任何一个环。因为如果它在环中,即使移除了它,我们仍然可以通过环上的其他路径在它的两个端点之间通行。

示例:
在这里插入图片描述

如果将红遍删去,那么图变得不再连通:
在这里插入图片描述

3. 点双连通分量 (v-BCC)

定义:
一个无向图的点双连通分量(简称“点双”)是一个极大的点双连通子图。而一个图被称为点双连通的,需要满足以下两个条件之一:

  1. 图的顶点数不超过2。
  2. 图中任意两点之间都至少存在两条点不相交的路径(除了起点和终点,路径上的其他顶点不重复)。

更直观的定义:
一个点双连通分量是一个不包含任何割点的极大子图。换句话说,在点双内部,移除任何一个点,剩下的部分依然是连通的。

通俗理解:
点双是一个“结构稳定”的子网络。在这个子网络内部,任何一个节点(站点)出故障,都不会影响其他节点之间的通信。

关键性质:

  • 一个割点可以属于多个点双连通分量。它扮演着连接不同点双的角色。
  • 一个非割点只属于唯一一个点双连通分量。
  • 图中的任意一条边最多只属于一个点双。

例子:
在下图中:任意删去一条边图任然连通。
在这里插入图片描述


4. 边双连通分量 ( e-BCC)

定义:
一个无向图的边双连通分量(简称“边双”)是一个极大的边双连通子图。而一个图被称为边双连通的,是指图中任意两点之间都至少存在两条边不相交的路径(路径上的边不重复)。

更直观的定义:
一个边双连通分量是一个不包含任何的极大子图。换句话说,在边双内部,移除任何一条边,剩下的部分依然是连通的。

通俗理解:
边双也是一个“结构稳定”的子网络,但要求比点双稍弱。在这个子网络内部,任何一条线路(边)中断,都不会影响任意两点之间的连通性。

关键性质:

  • 一个图可以被划分成若干个边双连通分量,这些分量之间通过连接。
  • 每个顶点和每条边都只属于唯一一个边双连通分量。

例子:
在下图中,删去任意的一条边图任然连通。
在这里插入图片描述

P8436 【模板】边双连通分量

题目描述

对于一个 n n n 个节点 m m m 条无向边的图,请输出其边双连通分量的个数,并且输出每个边双连通分量。

输入格式

第一行,两个整数 n n n m m m

接下来 m m m 行,每行两个整数 u , v u, v u,v,表示一条无向边。

不保证图为简单图,图中可能有重边和自环。

输出格式

第一行一个整数 x x x 表示边双连通分量的个数。

接下来的 x x x 行,每行第一个数 a a a 表示该分量结点个数,然后 a a a 个数,描述一个边双连通分量。

你可以以任意顺序输出边双连通分量与边双连通分量内的结点。

输入输出样例 #1

输入 #1

5 8
1 3
2 4
4 3
1 2
4 5
5 1
2 4
1 1

输出 #1

1
5 1 5 4 2 3

输入输出样例 #2

输入 #2

5 3
1 2
2 3
1 3

输出 #2

3
3 1 3 2
1 4
1 5

输入输出样例 #3

输入 #3

6 5
1 3
2 4
1 2
4 6
2 3

输出 #3

4
3 1 2 3
1 4
1 5
1 6

输入输出样例 #4

输入 #4

7 8
1 3
2 4
3 5
2 5
6 4
2 5
6 3
2 7

输出 #4

3
1 1
5 2 5 3 6 4
1 7

说明/提示

样例四解释:

相同颜色的点为同一个连通分量。


数据范围:
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 5 × 1 0 5 1 \le n \le 5 \times10 ^5 1n5×105 1 ≤ m ≤ 2 × 1 0 6 1 \le m \le 2 \times 10^6 1m2×106

subtask n n n m m m分值
1 1 1 1 ≤ n ≤ 100 1 \le n \le 100 1n100 1 ≤ m ≤ 500 1 \le m \le 500 1m500 25 25 25
2 2 2 1 ≤ n ≤ 5000 1 \le n \le 5000 1n5000 1 ≤ m ≤ 5 × 1 0 4 1 \le m \le 5 \times 10^4 1m5×104 25 25 25
3 3 3 1 ≤ n ≤ 2 × 1 0 5 1 \le n \le 2\times 10^5 1n2×105 1 ≤ m ≤ 5 × 1 0 5 1 \le m \le 5\times 10^5 1m5×105 25 25 25
4 4 4 1 ≤ n ≤ 5 × 1 0 5 1 \le n \le 5 \times10 ^5 1n5×105 1 ≤ m ≤ 2 × 1 0 6 1 \le m \le 2 \times 10^6 1m2×106 25 25 25

正解程序:

#include <bits/stdc++.h>

#define PII pair<int, int>

using namespace std;

// 定义常量,N为点数上限,M为边数上限
const int N = 5e5 + 5;
const int M = 2e6 + 5;

// --- 全局变量 ---
int n, m;                         // n: 点数, m: 边数
int dfn[N], low[N], tsp;           // Tarjan算法核心数组:
                                  // dfn[u]: 节点u的DFS时间戳 (discovery time)
                                  // low[u]: 节点u能追溯到的最早的祖先节点的dfn值
                                  // tsp: 时间戳计数器

int stk[N], top;                  // 手动实现的栈,用于存储当前DFS路径上的节点
int cnt;                          // e-BCC (边双连通分量) 的计数器
int id[N];                     

vector<PII> ed[N];                // 邻接表,存储图结构。
                                  // PII是 {邻接点v, 边(u,v)的编号p}

// --- 存储结果 ---
vector<int> ans[N];               // ans[i] 存储第 i 个 e-BCC 中的所有节点

// Tarjan算法核心函数,用于寻找边双连通分量
// u: 当前访问的节点
void tarjan(int u, int fa)
{
    // 1. 初始化当前节点u的dfn和low值
    dfn[u] = low[u] = ++ tsp;
    // 2. 将当前节点u压入栈中
    stk[ ++ top ] = u;

    // 3. 遍历u的所有邻接边
    for (auto x : ed[u]) {
        int v = x.first;      // 邻接点
        int p = x.second;     // 边(u,v)的编号

        // Case 1: 邻接点v还未被访问过 (dfn[v] == 0)
        // 这意味着 (u,v) 是一条DFS树上的“树边”
        if (!dfn[v]) {
            tarjan(v, p); // 递归访问v

            // 从子节点v回溯后,用v的low值更新u的low值
            // 意义是:如果v能回到更早的祖先,那么u也能通过v回到那里
            low[u] = min(low[u], low[v]);
            // 桥的判断逻辑,这里其实不是必须的,因为SCC的划分逻辑已足够
            // 但如果需要单独知道哪些是桥,这行代码是正确的
            // if(dfn[u] < low[v]) is[p] = is[p ^ 1] = true;

        } 
        // Case 2: 邻接点v已被访问过,并且(u,v)不是来时的路 (不是父边)
        // 这意味着 (u,v) 是一条“返祖边”
        else if (p != (fa ^ 1)) {
            // 用v的dfn值更新u的low值
            // 找到了一个从u回到其祖先v的捷径
            low[u] = min(low[u], dfn[v]);
        }
    }

    // 4. 关键:分量划分(SCC的划分逻辑)
    // 当一个节点u的dfn值和low值相等时,说明u是其所在e-BCC在DFS树中的根节点
    // 同时也意味着,从栈顶到u的所有节点,构成了一个完整的e-BCC
    if (dfn[u] == low[u]) {
        ++cnt; // 发现一个新的e-BCC,分量计数器加一
        int tp = -1;
        // 反复从栈顶弹出节点,直到u被弹出为止
        do {
            tp = stk[ top -- ]; // 弹出栈顶节点
            ans[cnt].push_back(tp); // 将弹出的节点加入当前分量
            // id[tp] = cnt; // 如果需要,也可以标记每个点所属的分量ID
        } while (u != tp);
    }
}

int main()
{
    // 优化输入输出
    ios::sync_with_stdio(false);
    cin.tie(0);

    cin >> n >> m;

    // --- 建图 ---
    // 使用 k 和 k+1 为一条无向边的两个方向进行唯一编号
    // 这样 p 和 p^1 就是互为反向的边,方便判断父边
    int k = 0; 
    for (int i = 1; i <= m; i++) {
        int u, v;
        cin >> u >> v;
        ed[u].push_back({v, k});
        ed[v].push_back({u, k + 1});
        k += 2;
    }
    // --- 运行算法 ---
    // 遍历所有节点,确保图不连通(森林)的情况下也能处理所有部分
    for (int i = 1; i <= n; i++) {
        if (!dfn[i]) { // 如果节点i还未被访问过
            tarjan(i, -1); // 从节点i开始进行Tarjan算法,-1表示没有父边
        }
    }

    // --- 输出结果 ---
    cout << cnt << endl; // 输出e-BCC的总数
    for (int i = 1; i <= cnt; i++) {
        cout << ans[i].size(); // 输出当前分量的节点数
        for (auto x : ans[i]) {
            cout << ' ' << x; // 输出分量内的每个节点
        }
        cout << endl;
    }

    return 0;
}

P8435 【模板】点双连通分量

题目描述

对于一个 n n n 个节点 m m m 条无向边的图,请输出其点双连通分量的个数,并且输出每个点双连通分量。

输入格式

第一行,两个整数 n n n m m m

接下来 m m m 行,每行两个整数 u , v u, v u,v,表示一条无向边。

输出格式

第一行一个整数 x x x 表示点双连通分量的个数。

接下来的 x x x 行,每行第一个数 a a a 表示该分量结点个数,然后 a a a 个数,描述一个点双连通分量。

你可以以任意顺序输出点双连通分量与点双连通分量内的结点。

输入输出样例 #1

输入 #1

5 8
1 3
2 4
4 3
1 2
4 5
5 1
2 4
1 1

输出 #1

1
5 1 2 3 4 5

输入输出样例 #2

输入 #2

5 3
1 2
2 3
1 3

输出 #2

3
1 4
1 5
3 1 2 3

输入输出样例 #3

输入 #3

6 5
1 3
2 4
1 2
4 6
2 3

输出 #3

4
2 6 4
2 4 2
3 3 2 1
1 5

输入输出样例 #4

输入 #4

7 8
1 3
2 4
3 5
2 5
6 4
2 5
6 3
2 7

输出 #4

3
2 7 2
5 5 2 4 6 3
2 3 1

输入输出样例 #5

输入 #5

1 1
1 1

输出 #5

1
1 1

说明/提示

样例四解释:

相同颜色的点为同一个分量里的结点。

温馨提示:请认真考虑孤立点与自环(样例五)的情况。


数据范围:
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 5 × 1 0 5 1 \le n \le 5 \times10 ^5 1n5×105 1 ≤ m ≤ 2 × 1 0 6 1 \le m \le 2 \times 10^6 1m2×106

subtask n n n m m m分值
1 1 1 1 ≤ n ≤ 100 1 \le n \le 100 1n100 1 ≤ m ≤ 500 1 \le m \le 500 1m500 25 25 25
2 2 2 1 ≤ n ≤ 5000 1 \le n \le 5000 1n5000 1 ≤ m ≤ 5 × 1 0 4 1 \le m \le 5 \times 10^4 1m5×104 25 25 25
3 3 3 1 ≤ n ≤ 2 × 1 0 5 1 \le n \le 2\times 10^5 1n2×105 1 ≤ m ≤ 5 × 1 0 5 1 \le m \le 5\times 10^5 1m5×105 25 25 25
4 4 4 1 ≤ n ≤ 5 × 1 0 5 1 \le n \le 5 \times10 ^5 1n5×105 1 ≤ m ≤ 2 × 1 0 6 1 \le m \le 2 \times 10^6 1m2×106 25 25 25

注: 以该题目为例题, 给出点双连通分量的模板, 在模板中,有对与点双的缩点与建图的程序,是题目中没有的。

缩点建图的过程

关键:将每一个割点都建一条包含该割点的V-DCC的无向边。

  1. 循环遍历所有已找到的 V-DCC,其总数为 c n t cnt cnt
  2. 定义新顶点:为第 i i i 个 BCC 分配一个新的、唯一的ID----- i d id id
  3. 遍历当前V-DCC中的每一个原始顶点 u u u
  4. 检查顶点 u u u 是否为割点,如果 u u u 是割点,则在新图 h s hs hs 中,在代表 V-DCC 的节点 i d id id 和代表割点的节点 u u u 之间添加一条无向边。
    在这里插入图片描述
    解释
    绿色和红色的两个大圈都是V-DCC, 紫色的是两个V-DCC共用的割点,割点的编号不变,将绿色大圈缩点并赋予一个新的id与割点相连接,红圈同理。😃

模板程序

#include <bits/stdc++.h>

using namespace std;

const int N = 500005; // 原图最大顶点数
const int M = N * 2;   // 新图最大节点数 (n个原点 + 最多n个BCC点)

int n, m;
vector<int> ed[N];    // 原图邻接表

// Tarjan 算法所需
int dfn[N], low[N], tsp;
int stk[N], top;
int cnt;              // 点双连通分量(BCC)的计数器
bool is[N];           // is[i] = true 表示 i 是割点

// 结果存储
vector<int> dcc[N];   // dcc[i] 存储第 i 个BCC的所有节点
vector<int> hs[M];    // 缩点后新图(块割树)的邻接表

void tarjan(int u, int fa)
{
    dfn[u] = low[u] = ++ tsp;
    stk[ ++ top ] = u;
    int son = 0; // DFS树中子节点计数

    for(auto v : ed[u]){
        if (v == fa) continue;
        if (!dfn[v]) {
            son ++ ;
            tarjan(v, u);
            low[u] = min(low[u], low[v]);
            if (low[v] >= dfn[u]) {
                // 标记割点
                if(fa != 0 || son > 1) is[u] = true;
                // 提取BCC
                cnt ++ ;
                int tp;
                do {
                    tp = stk[top--];
                    dcc[cnt].push_back(y);
                } while (tp != v);
                dcc[cnt].push_back(u);
            }
        }else low[u] = min(low[u], dfn[v]);
    }
    // 特判:u是一个孤立的连通分量
    if(fa == 0 && son == 0){
        cnt ++ ;
        dcc[cnt].push_back(u);
    }
}
void build()
{
    for(int i = 1; i <= cnt; ++i){
        int bcc_id = n + i; // 为BCC分配新ID
        for(auto u : dcc[i]){
            if(is[u]){
                hs[bcc_id].push_back(u);
                hs[u].push_back(bcc_id);
            }
        }
    }
}

int main() 
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cin >> n >> m;
    for (int i = 0; i < m; ++i) {
        int u, v;
        cin >> u >> v;
        if (u == v) continue; // 忽略自环
        ed[u].push_back(v);
        ed[v].push_back(u);
    }

    // 2. 运行 Tarjan 算法
    for (int i = 1; i <= n; ++i) {
        if (!dfn[i]) {
            top = 0; // 这可以防止一个连通分量的计算状态污染到下一个。
            tarjan(i, 0);
        }
    }

    // 3. 构建新图
    build();


    // --- 使用和输出部分 ---

    // A. 输出BCC (例如P8435模板题的要求)
    cout << cnt << "\n";
    for (int i = 1; i <= cnt; ++i) {
        cout << dcc[i].size() << " ";
        for (int node : dcc[i]) {
            cout << node << " ";
        }
        cout << "\n";
    }
    return 0;
}

感谢观看,如果可以请关注我的洛谷,加入我的洛谷团队(不定期通过)。
Jamig
Jamig的团队
我会不定期在团队中分享高质量题目 😃

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值