论文解读《ResRep: Lossless CNN Pruning via Decoupling Remembering and Forgetting》

《ResRep: Lossless CNN Pruning via Decoupling Remembering and Forgetting》提出了一种在CNN中无损剪枝的方法,通过在卷积层后加入1x1卷积的修剪层,解耦训练与修剪过程,避免影响模型准确性。通过在修剪层施加惩罚项,促进通道的稀疏性,并在训练后删除接近零的通道,最终实现等价的修剪模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《ResRep: Lossless CNN Pruning via Decoupling Remembering and Forgetting》

论文地址:https://arxiv.org/pdf/2007.03260.pdf
code地址:https://link.zhihu.com/?target=https%3A//github.com/DingXiaoH/ResRep

一、论文主要思路:

  1. 在模型的conv层之后(若没bn层,有bn层则将conv-bn层合并形成一个卷积操作之后再加入compactor layer)加入修剪层(compactor layer论文最后说明为何要单独加入修剪层),是1*1的卷积核,也就是只对conv输出做线性变换
  2. 在1加入的修剪层上施加惩罚项,使之趋于0,增加稀疏性。(在本文中,并没有这种做,在更新修剪层参数时直接加上惩罚项的梯度,这样等价于在目标损失函数上加上惩罚项)对于施加惩罚项进行稀疏训练可以参考这个论文:https://blog.csdn.net/janezjlj/article/details/127508566?spm=1001.2014.3001.5501
  3. 对于2训练之后,将接近0的通道进行删除
  4. 将conv-compactor layer 进行等价合并,形成修剪后的模型
    思路对应原文如下:
以下是 ResRep 的 PyTorch 版本的源代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels for i in range(num_blocks - 1): layers.append(block(out_channels, out_channels, stride=1)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out def ResRep18(): return ResNet(ResidualBlock, [2, 2, 2, 2]) def ResRep34(): return ResNet(ResidualBlock, [3, 4, 6, 3]) def ResRep50(): return ResNet(BottleneckBlock, [3, 4, 6, 3]) def ResRep101(): return ResNet(BottleneckBlock, [3, 4, 23, 3]) def ResRep152(): return ResNet(BottleneckBlock, [3, 8, 36, 3]) ``` 这里定义了 ResidualBlock 类和 ResNet 类,其中 ResNet 由多个 ResidualBlock 组成。可以通过调用 ResRep18()、ResRep34()、ResRep50()、ResRep101() 和 ResRep152() 函数来获取不同深度的 ResNet 模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值