剑指 Offer 10- II. 青蛙跳台阶问题

本文介绍了青蛙跳台阶问题的解决方案,该问题涉及到动态规划和斐波那契数列。当青蛙面临不同数量的台阶时,它可以一次跳1级或2级,计算所有可能的跳法总数。例如,2级台阶有2种跳法,7级台阶有21种。解答过程中,通过递推公式f(n) = f(n-1) + f(n-2)计算,结果需对1e9+7取模。

题目

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:2
示例 2:

输入:n = 7
输出:21
示例 3:

输入:n = 0
输出:1
提示:

0 <= n <= 100

我的答案

class Solution {
    int a=1,b=1;
    int res;
    public int numWays(int n) {

        
        if(n<0) return -1;
        else if(n==0) return 1;
        else if(n==1) return 1;
        else for(int i=1;i<n;i++){
            res = a+b;
            a=b;
            b=res%1000000007;

        }

        return res%1000000007;
    }
}

  • 如果只有0级台阶,不跳也算一种跳法
  • 如果只有1级台阶,那显然只有一种跳法
  • 如果有2级台阶,那么就有2种跳法,一种是分2次跳。每次跳1级,另一种就是一次跳2级
  • 如果台阶级数大于2,设为n的话,这时我们把n级台阶时的跳法看成n的函数f(n),记为,第一次跳的时候有2种不同的选择:一是第一次跳一级,此时跳法的数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1),二是第一次跳二级,此时跳法的数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2),因此n级台阶的不同跳法的总数为f(n)=f(n-1)+f(n-2),不难看出就是斐波那契数列

在这里插入图片描述

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据精读周刊

喝杯咖啡????

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值