jason_cuijiahui的博客

区块链+人工智能

指数分布族常见类型

都在这里总结得很好了

2017-10-01 16:02:13

阅读数:323

评论数:0

举例说明强化学习以及监督学习的区别

可以分为两方面看:种西瓜的例子强化学习是一个多次决策的过程,可以形成一个决策链,即西瓜书上种西瓜的例子;监督学习只是一个一次决策的过程。摇杠赌博机的例子强化学习:赌徒没有初始数据集,只能通过用某种策略取测试摇杠,期望能在整个测试过程得到最好的收益; 监督学习:赌徒一开始就统计了所有用户在赌博机上的...

2017-09-30 17:22:05

阅读数:334

评论数:0

机器学习分类:监督学习、无监督学习、半监督学习、强化学习

监督学习(Supervised Learning)数据集为(x, y)一些监督学习技术包括: 线性回归 (回归) 局部线性回归 (回归) logistic回归 (分类) 深度神经网络 无监督学习(Unsupervised Learning)数据集为(x)一些无监督学习技术包括: 自编码(Autoe...

2017-09-30 17:19:42

阅读数:1166

评论数:0

决策树

决策树的工作原理从树的根节点开始,将测试条件用于检验记录,根据测试结果选择适当的分支。沿着该分支或者到达另一个内部结点,使用新的测试条件,或者到达一个叶结点。到达叶结点以后,叶节点的类称号就被赋值给该检验记录。如何建立决策树原则来讲,对于给定的属性集,可以构造的决策树的数目达到指数级。尽管某些决策...

2017-07-03 22:53:04

阅读数:2822

评论数:1

数据挖掘导论(4)——分类:基本概念、决策树与模型评估

定义: 分类(classification) 分类任务就是通过学习得到一个目标函数f (也称分类模型),把每个属性集x映射到一个预先定义的类标号y。注意: 分类技术非常适合预测或描述二元或标称类型的数据集,对于序数分类(例如,把人分类为高收入、中等收入或低收入),分类技术不太有效。 因为分类...

2017-07-03 22:03:18

阅读数:199

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭