Jaster_wisdom的专栏

待到山花烂漫时,她在丛中笑

Linux下c++调用自己编写的matlab函数:通过mcc动态链接库.so实现

之前在这里和这里调用了matlab自带的一些函数,是通过matlab引擎来实现的。那里调用的是matlab自带的函数,那么如果想调用自己写的.m函数该怎么办呢?其实很简单,原理类似,方法也不止一种。这篇笔记我先尝试通过mcc将.m函数编译成动态链接库供c++调用的方式。在另一篇笔记中还尝试了另一种...

2016-03-31 15:22:22

阅读数:1318

评论数:0

Android如何调用第三方SO库

问题描述:Android如何调用第三方SO库; 已知条件:SO库为Android版本连接库(*.so文件),并提供了详细的接口说明; 已了解解决方案: 1.将SO文件直接放到libs/armeabi下,然后代码中System.loadLibrary("xxx");再pub...

2016-03-31 15:20:46

阅读数:912

评论数:0

Linux下安装Matlab2014及破解

文章已搬家至http://lanbing510.info/2014/12/03/Linux-Matlab.html 最近由于项目需要,需要在ubuntu下安装Matlab,具体操作如下: 1 从http://pan.baidu.com/s/1o6qKdxo#pa...

2016-03-31 15:17:23

阅读数:853

评论数:0

POJ 2446

题目大意: 给定一个M*N大小的棋盘,其中的一些点是洞,无法放置卡片,卡片是占两个格子的矩形方块。现在用程序来判断 是否可以用卡片不重叠的 将整个棋盘填满? 思路: 看到这道题,压根刚开始没想起来用二分图,最大匹配来做。后来看了网上的博客,才有些思路。 首先要明确的是,在棋盘中,[i...

2016-03-30 20:00:07

阅读数:286

评论数:0

程序员互动联盟(第一届编程大赛第一题)

题目大意: 将1到N的连续整数组成的集合划分成两个子集合,且保证每个集合的数字和是相等的。 例如,输入N=3,对应的集合{1,2,3} 可以被划分为{3},{1,2}两个子集合,这两个子集合中元素分别的和是相等的。输入7,输出4 思路: 首先1,2,3……N所有元素的和为 S= N...

2016-03-30 16:00:05

阅读数:596

评论数:0

POJ 1469

这是一道 二分图 求最大匹配边 最经典的例子,开始我竟没有看出来。。 题目大意是,给定N名学生,P名课程,一名学生可以修任意门课程,要问的是能否在N名学生中找到P个人使他们满足两个条件:每个学生代表一门不同的课程,每门课程由一名学生代表。 其实把这两句话 好好咀嚼一下,发现就是 二分图中最大匹...

2016-03-29 19:53:15

阅读数:257

评论数:0

图的广度遍历 (算法导论 345页)

最近,做了几道关于图的题目,略感生疏。准备看看算法导论复习一下。说到基本的图算法,那就必然会提高图算法的核心-搜索,经典的 广度搜索BFS 和 深度搜索DFS 形象点说,前者就是 水面上泛起的 涟漪,一层一层注重广度;而后者 就是 打洞,往深里去,打完一个洞,再打另一个洞。  算法导论,第22章基...

2016-03-28 20:38:04

阅读数:326

评论数:0

POJ 1325 (最小覆盖数)

题目大意:      有两类机器A,B,它们分别有m和n类工作模式,现在有k个任务,每个任务可以选择机器A的某个模式 或者 选择机器B的某个模式,模式之间的转换 需要重启,问最少需要几次重启 可以将任务 全部做完? 思路:首先建图,画两个集合X,Y,分别存放A和B的工作模式,若任务i 既可以用...

2016-03-28 17:13:48

阅读数:376

评论数:0

POJ 2594 (最小路径覆盖+可重点)

这是一道典型的二分匹配的题目,问的是最少需要多少个机器人可以将点全部覆盖。 每个机器人散落在一个点上,每个机器人不能走回路。 公式: 最小路径覆盖数 = 顶点数 - 最大匹配数 最大匹配数用匈牙利算法可求的。 这里的关键是 每个机器人可以走过相同的点,也就是意味着 就算i和j没有边直接相...

2016-03-26 22:13:15

阅读数:321

评论数:0

POJ 1422 (最小路径覆盖)

题目大意: 给定街道数量和交叉路口数量,以及每条路口之间有向连接,空降伞兵在岔路口,每个岔路口最多一个伞兵,伞兵可以沿着有向街道走,但是每个路口只能经过一个伞兵,问最少需要多少个伞兵才能将各个岔路口都访问到? 这是一道最小路径覆盖的题目 最小路径覆盖数 = 顶点数目 - 最大匹配边数 关键...

2016-03-26 15:04:07

阅读数:376

评论数:0

二分图的最大匹配(匈牙利算法)

这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm);不讲带权二分图的最佳匹配。 二分图:简单来说,如果...

2016-03-26 15:02:40

阅读数:443

评论数:0

基础的重要性 (程序员之路)

学习编程有几年了,感觉走了不少弯路,而不少的学弟学妹又在重蹈我当初的覆辙,不免有些痛心。最近在网 上也看了许多前辈们的经验建议,再结合自己的学习经历在这里谈谈基础的重要性,希望帮助大家少走些弯 路。 什么是基础呢?就是要把我们大学所学的离散数学,算法与数据结构,操作系统,计算机体系结构,编译...

2016-03-26 13:05:33

阅读数:428

评论数:0

POJ 1149

题目: m个猪圈,n个顾客,每个猪圈里面有一定数量的猪,每个顾客有一定的需求量。求最多可以卖出多少条猪? 这里注意有一个前提条件,就是一个顾客开了一个猪圈之后,后 面的话,可以将这个猪圈里面的猪 拉到其他猪圈里去。 此题关键就是 建立图结构,因为最大流问题,我们可以用 EK 模板来套。 此...

2016-03-21 20:14:07

阅读数:308

评论数:0

最大流问题(EK算法模板)

最近在看 最大流问题,因为是第一次涉及到这种问题,以及第一次接触到这种类型的算法,所以刚开始一头雾水。 首先,这种问题概念比较多,残存网络,增广路径,最小割,流量对称,等。 其次,虽然有现成的方法解决,但是解决此方法的算法有多种,优化的算法也有很多。 刚开始看 Dinic 匈牙利算法,真心没看懂。...

2016-03-21 08:58:57

阅读数:415

评论数:0

POJ 1459

最大流问题,EK算法 #include #include #include using namespace std; #define MAX 1<<29; #define MAXV 105 int map[MAXV][MAXV],pre[MAXV],vis[MAXV],n; ...

2016-03-21 08:41:00

阅读数:272

评论数:0

POJ 1087

这是一个 网络中的最大流问题的 经典问题。 题目: 有n个插座,m个电器,k种适配器(a,b),表示插座b可以替代插座a 问最少有多少个 电器 充不到电? 这道题 可以转换为 求最多可以多少个 电器设备可插入? maxflow 那么问题的答案就是 m - maxflow 下面就...

2016-03-20 10:30:30

阅读数:284

评论数:0

最大流问题 浅析

主要参考:  《算法导论》     引言   还是前几天参加的2014阿里巴巴春季校招(测试开发岗)笔试. 有道选择题:   图1中标出了每条有向公路最大流量,请问从S到T最大流量是( ).      A.46     B. 47     C. 54      D.77    ...

2016-03-19 22:41:16

阅读数:378

评论数:0

POJ 1088

看完该题,第一个想法是,找到 数组中 最大的数,然后在其周围找一个仅次于它大小的数,然后这样循环下去,不过这样好像比较麻烦。当某点上下左右四个点 都是一样大时,需要保留四个方向的值。 后来采用 动态规划+递归,用len[i][j] 表示从(i,j)点开始的最大深度,动态转移方程: len[i][j...

2016-03-19 10:24:14

阅读数:360

评论数:0

POJ 2485

最小生成树的例子。 这次求的不是 最小生成树边的权值之和,而是构成最小生成树中 最长的边。不过,无论题目怎么变化,Prim算法的核心思想是 一样的,只要改变一下 最后输出的结果,找边的最大值即可。 最后,说一下,这道题目的输出格式。本来没什么要求,可就是题目中说 每个样例 之后空一行,结果我c...

2016-03-17 19:06:53

阅读数:232

评论数:0

POJ 1789

题目我咋一看, 觉得有点新颖,后来 读题之后 发现又是 最小生成树的 例子。 题目大意:每条字符串 都可以 由其他的字符串 演化出来。定义两个字符串之间的距离,就是它们之间不同的字符的个数。 要求的是, 如何演化,对应的距离之和 最短,相应的 倒数也就是 最大的。我们知道,最小生成树的权值之和是...

2016-03-17 16:59:42

阅读数:208

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭